ﻻ يوجد ملخص باللغة العربية
We propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with wide ranges of expressions, poses, and illuminations conditioned by a 3D morphable model. Previous adversarial style-transfer methods either supervise their networks with large volume of paired data or use unpaired data with a highly under-constrained two-way generative framework in an unsupervised fashion. We introduce pairwise adversarial supervision to constrain two-way domain adaptation by a small number of paired real and synthetic images for training along with the large volume of unpaired data. Extensive qualitative and quantitative experiments are performed to validate our idea. Generated face images of new identities contain pose, lighting and expression diversity and qualitative results show that they are highly constraint by the synthetic input image while adding photorealism and retaining identity information. We combine face images generated by the proposed method with the real data set to train face recognition algorithms. We evaluated the model on two challenging data sets: LFW and IJB-A. We observe that the generated images from our framework consistently improves over the performance of deep face recognition network trained with Oxford VGG Face dataset and achieves comparable results to the state-of-the-art.
Most 3D face reconstruction methods rely on 3D morphable models, which disentangle the space of facial deformations into identity geometry, expressions and skin reflectance. These models are typically learned from a limited number of 3D scans and thu
Embedding 3D morphable basis functions into deep neural networks opens great potential for models with better representation power. However, to faithfully learn those models from an image collection, it requires strong regularization to overcome ambi
In this paper, we bring together two divergent strands of research: photometric face capture and statistical 3D face appearance modelling. We propose a novel lightstage capture and processing pipeline for acquiring ear-to-ear, truly intrinsic diffuse
We propose a Regularization framework based on Adversarial Transformations (RAT) for semi-supervised learning. RAT is designed to enhance robustness of the output distribution of class prediction for a given data against input perturbation. RAT is an
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still a