ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb branches with complex singularities

72   0   0.0 ( 0 )
 نشر من قبل Mario Martone
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of $mathcal N=4$ superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as $mathcal N=4$ sYM theories with disconnected gauge groups.



قيم البحث

اقرأ أيضاً

We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalen t to the solution of a set of polynomial equations by using an integrability condition for the central charge, scale invariance, constraints coming from demanding single-valuedness of physical quantities on the Coulomb branch, and properties of massless BPS states at singularities. We find solutions corresponding to lagrangian scale invariant theories--including the scale invariant G_2 theory not found before in the literature--as well as many new isolated solutions (having no marginal deformations). All our scale-invariant RSK geometries are consistent with an interpretation as effective theories of N=2 superconformal field theories, and, where we can check, turn out to exist as quantum field theories.
We continue the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries. This classification was begun in [hep-th/0504070] where singularities corresponding to curves of the form y^2=x^6 with a fixed canonical basis of h olomorphic one forms were analyzed. Here we perform the analysis for the y^2=x^5 type singularities. (The final maximal singularity type, y^2=x^3(x-1)^3, will be analyzed in a later paper.) These singularities potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that there are only 13 solutions satisfying the integrability condition (enforcing the RSK geometry of the Coulomb branch) and the Z-consistency condition (requiring massless charged states at singularities). Of these solutions, one has a marginal deformation, and corresponds to the known solution for certain Sp(2) gauge theories, while the rest correspond to isolated strongly interacting conformal field theories.
By studying Rozansky-Witten theory with non-compact target spaces we find new connections with knot invariants whose physical interpretation was not known. This opens up several new avenues, which include a new formulation of $q$-series invariants of 3-manifolds in terms of affine Grassmannians and a generalization of Akutsu-Deguchi-Ohtsuki knot invariants.
237 - Philip C. Argyres , Cody Long , 2018
We compute the spectrum of scaling dimensions of Coulomb branch operators in 4d rank-2 $mathcal{N}{=}2$ superconformal field theories. Only a finite rational set of scaling dimensions is allowed. It is determined by using information about the global topology of the locus of metric singularities on the Coulomb branch, the special Kahler geometry near those singularities, and electric-magnetic duality monodromies along orbits of the $rm, U(1)_R$ symmetry. A set of novel topological and geometric results are developed which promise to be useful for the study and classification of Coulomb branch geometries at all ranks.
Three-dimensional Coulomb branches have a prominent role in the study of moduli spaces of supersymmetric gauge theories with $8$ supercharges in $3,4,5$, and $6$ dimensions. Inspired by simply laced $3$d $mathcal{N}=4$ supersymmetric quiver gauge the ories, we consider Coulomb branches constructed from non-simply laced quivers with edge multiplicity $k$ and no flavor nodes. In a computation of the Coulomb branch as the space of dressed monopole operators, a center-of-mass $U(1)$ symmetry needs to be ungauged. Typically, for a simply laced theory, all choices of the ungauged $U(1)$ (i.e. all choices of ungauging schemes) are equivalent and the Coulomb branch is unique. In this note, we study various ungauging schemes and their effect on the resulting Coulomb branch variety. It is shown that, for a non-simply laced quiver, inequivalent ungauging schemes exist which correspond to inequivalent Coulomb branch varieties. Ungauging on any of the long nodes of a non-simply laced quiver yields the same Coulomb branch $mathcal{C}$. For choices of ungauging the $U(1)$ on a short node of rank higher than $1$, the GNO dual magnetic lattice deforms such that it no longer corresponds to a Lie group, and therefore, the monopole formula yields a non-valid Coulomb branch. However, if the ungauging is performed on a short node of rank $1$, the one-dimensional magnetic lattice is rescaled conformally along its single direction and the corresponding Coulomb branch is an orbifold of the form $mathcal{C}/mathbb{Z}_k$. Ungauging schemes of $3$d Coulomb branches provide a particularly interesting and intuitive description of a subset of actions on the nilpotent orbits studied by Kostant and Brylinski arXiv:math/9204227. The ungauging scheme analysis is carried out for minimally unbalanced $C_n$, affine $F_4$, affine $G_2$, and twisted affine $D_4^{(3)}$ quivers, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا