ﻻ يوجد ملخص باللغة العربية
We study the following communication variant of local search. There is some fixed, commonly known graph $G$. Alice holds $f_A$ and Bob holds $f_B$, both are functions that specify a value for each vertex. The goal is to find a local maximum of $f_A+f_B$ with respect to $G$, i.e., a vertex $v$ for which $(f_A+f_B)(v)geq (f_A+f_B)(u)$ for every neighbor $u$ of $v$. Our main result is that finding a local maximum requires polynomial (in the number of vertices) bits of communication. The result holds for the following families of graphs: three dimensional grids, hypercubes, odd graphs, and degree 4 graphs. Moreover, we provide an emph{optimal} communication bound of $Omega(sqrt{N})$ for the hypercube, and for a constant dimensional greed, where $N$ is the number of vertices in the graph. We provide applications of our main result in two domains, exact potential games and combinatorial auctions. First, we show that finding a pure Nash equilibrium in $2$-player $N$-action exact potential games requires polynomial (in $N$) communication. We also show that finding a pure Nash equilibrium in $n$-player $2$-action exact potential games requires exponential (in $n$) communication. The second domain that we consider is combinatorial auctions, in which we prove that finding a local maximum in combinatorial auctions requires exponential (in the number of items) communication even when the valuations are submodular. Each one of the results demonstrates an exponential separation between the non-deterministic communication complexity and the randomized communication complexity of a total search problem.
We provide the first separation in the approximation guarantee achievable by truthful and non-truthful combinatorial auctions with polynomial communication. Specifically, we prove that any truthful mechanism guaranteeing a $(frac{3}{4}-frac{1}{240}+v
Let $(f,P)$ be an incentive compatible mechanism where $f$ is the social choice function and $P$ is the payment function. In many important settings, $f$ uniquely determines $P$ (up to a constant) and therefore a common approach is to focus on the de
Candidate control of elections is the study of how adding or removing candidates can affect the outcome. However, the traditional study of the complexity of candidate control is in the model in which all candidates and votes are known up front. This
Most work on manipulation assumes that all preferences are known to the manipulators. However, in many settings elections are open and sequential, and manipulators may know the already cast votes but may not know the future votes. We introduce a fram
Prior work on the complexity of bribery assumes that the bribery happens simultaneously, and that the briber has full knowledge of all voters votes. But neither of those assumptions always holds. In many real-world settings, votes come in sequentiall