ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Families for Lagrangians in $mathbb{R}^{2n}$ and the Hatcher-Waldhausen map

157   0   0.0 ( 0 )
 نشر من قبل Thomas Kragh
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Thomas Kragh




اسأل ChatGPT حول البحث

In this paper we construct a generating family quadratic at infinity for any exact Lagrangian in $mathbb{R}^{2n}$ equal to $mathbb{R}^n$ outside a compact set. Such generating families are related to the space $mathcal{M}_infty$ considered by Eliashberg and Gromov. We show that this space is the homotopy fiber of the Hatcher-Waldhausen map, and thus serves as a geometric model for this space. This relates the understanding of exact Lagrangians (and Legendrians) to algebraic K-theory of spaces. We then use this fibration sequence to produce new results (restrictions) on this type of Lagrangian. In particular we show how Bokstedts result that the Hatcher-Waldhausen map is a rational homotopy equivalence proves the new result that the stable Lagrangian Gauss map for our Lagrangian relative infinity is homotopy trivial.



قيم البحث

اقرأ أيضاً

We show that the transfer map on Floer homotopy types associated to an exact Lagrangian embedding is an equivalence. This provides an obstruction to representing isotopy classes of Lagrangian immersions by Lagrangian embeddings, which, unlike previou s obstructions, is sensitive to information that cannot be detected by Floer cochains. We show this by providing a concrete computation in the case of spheres.
215 - Sheel Ganatra 2016
Suppose one has found a non-empty sub-category $mathcal{A}$ of the Fukaya category of a compact Calabi-Yau manifold $X$ which is homologically smooth in the sense of non-commutative geometry, a condition intrinsic to $mathcal{A}$. Then, we show $math cal{A}$ split-generates the Fukaya category and moreoever, that our hypothesis implies (and is therefore equivalent to the assertion that) $mathcal{A}$ satisfies Abouzaids geometric generation criterion [Abo]. An immediate consequence of earlier work [G1, GPS1, GPS2] is that the open-closed and closed-open maps, relating quantum cohomology to the Hochschild invariants of the Fukaya category, are also isomorphisms. Our result continues to hold when $c_1(X) eq 0$ (for instance, when $X$ is monotone Fano), under a further hypothesis: the 0th Hochschild cohomology of $mathcal{A}$ $mathrm{HH}^0(mathcal{A})$ should have sufficiently large rank: $mathrm{rk} mathrm{HH}^0(mathcal{A}) geq mathrm{rk} mathrm{QH}^0(X)$. Our proof depends only on formal properties of Fukaya categories and open-closed maps, the most recent and crucial of which, compatibility of the open-closed map with pairings, was observed independently in ongoing joint work of the author with Perutz and Sheridan [GPS2] and by Abouzaid-Fukaya-Oh-Ohta-Ono [AFO+]; a proof in the simplest settings appears here in an Appendix. Because categories Morita equivalent to categories of coherent sheaves or matrix factorizations are homologically smooth, our result applies to resolve the split-generation question in homological mirror symmetry for compact symplectic manifolds (generalizing a result of Perutz-Sheridan [PS2] proven in the case $c_1(X) = 0$): any embedding of coherent sheaves or matrix factorizations into the split-closed derived Fukaya category is automatically a Morita equivalence when it has large enough $mathrm{HH}^0$ (which it always does if $c_1(X)=0$).
We prove that existence of a k-rational point can be detected by the stable A^1-homotopy category of S^1-spectra, or even a rationalized variant of this category.
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b y showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا