ﻻ يوجد ملخص باللغة العربية
Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT- White (NEW) apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for $betabeta 0 u$ decays in 136Xe in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2017 at the Canfranc Underground Laboratory (LSC), in Spain. This paper describes the detector and associated infrastructures.
One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with 137Cs and 232Th sources
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper w
The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. NEXT-White has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2
Excellent energy resolution is one of the primary advantages of electroluminescent high pressure xenon TPCs, and searches for rare physics events such as neutrinoless double-beta decay ($betabeta0 u$) require precise energy measurements. Using the NE
A high pressure xenon gas time projection chamber with electroluminescent amplification (EL HPGXe TPC) searching for the neutrinoless double beta ($0 ubetabeta$) decay offers: excellent energy resolution ($0.5-0.7%$ FWHM at the $Q_{betabeta}$), by am