ﻻ يوجد ملخص باللغة العربية
Recently, the DAMA/LIBRA collaboration released updated results from their search for the annual modulation signal from Dark Matter (DM) scattering in the detector. Besides approximately doubling the exposure of the DAMA/LIBRA data set, the updated photomultiplier tubes of the experiment allow a lower recoil energy threshold of 1,keV electron equivalent compared to the previous threshold of 2 keV electron equivalent. We study the compatibility of the observed modulation signal with DM scattering. Due to a conspiracy of multiple effects, the new data at low recoil energies is very powerful for testing the DM hypothesis. We find that canonical (isospin conserving) spin-independent DM-nucleon interactions are no longer a good fit to the observed modulation signal in the standard halo model. The canonical spin-independent case is disfavored by the new data, with best fit points of a DM mass of $sim 8,$GeV, disfavored by $5.2,sigma$, or a mass of $sim 54,$GeV, disfavored by $2.5,sigma$. Allowing for isospin violating spin independent interactions, we find a region with a good fit to the data with suppressed effective couplings to iodine for DM masses of $sim 10,$GeV. We also consider spin-dependent DM-nucleon interactions, which yield good fits for similar DM masses of $sim 10,$GeV or $sim 45,$GeV
The present DAMA/LIBRA experiment and the former DAMA/NaI have cumulatively released so far the results obtained with the data collected over 13 annual cycles (total exposure: 1.17 ton $times$ yr). They give a model independent evidence of the presen
The DAMA/LIBRA experiment, running at the Gran Sasso National Laboratory of the I.N.F.N. in Italy, has a sensitive mass of about 250 kg highly radiopure NaI(Tl). It is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic
The DAMA/LIBRA set-up (about 250 kg highly radiopure NaI(Tl) sensitive mass) is running at the Gran Sasso National Laboratory of the I.N.F.N.. The first DAMA/LIBRA results confirm the evidence for the presence of a Dark Matter particle component in t
The DAMA/LIBRA experiment ($sim$ 250 kg of highly radio-pure NaI(Tl)) is running deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. Here we briefly recall the results obtained in its first phase of measurements (DAMA/LIBRA-
DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N.. Here the results obtained with a further exposure of 0.34 ton x yr are presented. They refer to two further annual cycles collected one before and one after the first DAMA/L