ﻻ يوجد ملخص باللغة العربية
We present a novel and simple algorithm in the variation after projection (VAP) approach for the non-yrast nuclear states. It is for the first time that the yrast state and non-yrast states can be varied on the same footing. The orthogonality among the calculated states is automatically fulfilled by solving the Hill-Wheeler equation. This avoids the complexity of the frequently used Gram-Schmidt orthogonalization, as adopted by the excited VAMPIR method. Thanks to the Cauchys interlacing theorem in the matrix theory, the sum of the calculated lowest projected energies with the same quantum numbers can be safely minimized. Once such minimization is converged, all the calculated energies and the corresponding states can be obtained, simultaneously. The present VAP calculations are performed with time-odd Hartree-Fock Slater determinants. It is shown that the calculated VAP energies (both yrast and non-yrast) are very close to the corresponding ones from the full shell model calculations. It looks the present algorithm is not limited to the VAP, but should be universal, i.e., one can do the variation with different forms of the many-body wavefunctions to calculate the excited states in different quantum many-body systems.
Projection is noninvertible. This means two different vectors may have the same projected components. In nuclear case, one may take the intrinsic state as a vector, and take the nuclear wave function as the projected component obtained by projecting
We implemented a variation after projection (VAP) algorithm based on a triaxially deformed Hartree-Fock-Bogoliubov vacuum state. This is the first projected mean field study that includes all the quantum numbers (except parity), i.e., spin ($J$), iso
The backbending phenomenon in $^{48}$Cr has been investigated using the recently developed Projected Configuration Interaction (PCI) method, in which the deformed intrinsic states are directly associated with shell model (SM) wavefunctions. Two previ
We have recently developed an efficient method of performing the full quantum number projection from the most general mean-field (HFB type) wave functions including the angular momentum, parity as well as the proton and neutron particle numbers. With
We have developed an efficient method for quantum number projection from most general HFB type mean-field states, where all the symmetries like axial symmetry, number conservation, parity and time-reversal invariance are broken. Applying the method,