ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between speed and fidelity in off-resonant quantum-state transfer protocols

234   0   0.0 ( 0 )
 نشر من قبل Guilherme Martins Alves de Almeida
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An arbitrary qubit can be transmitted through a spin chain by perturbatively coupling both communicating parties to it. Those so-called weak-coupling models rely on effective Rabi oscillations between them, yielding nearly maximum fidelity while offering great resilience against disorder with the cost of having long transfer times. Considering this framework, here we address a 1D non-symmetric channel connecting two spins, one placed at each end of it. Given any pattern of nearest-neighbor coupling strengths, we obtain an analytical expression that accounts for the effective long-range interaction between them and study the interplay between transfer time and fidelity. Furthermore, we show that homogeneous channels provide the best speed-fidelity tradeoff.

قيم البحث

اقرأ أيضاً

We derive the optimal analytical quantum-state-transfer control solutions for two disparate quantum memory blocks. Employing the SLH formalism description of quantum network theory, we calculate the full quantum dynamics of system populations, which lead to the optimal solution for the highest quantum fidelity attainable. We show that, for the example where the mechanical modes of two optomechanical oscillators act as the quantum memory blocks, their optical modes and a waveguide channel connecting them can be used to achieve a quantum state transfer fidelity of 96% with realistic parameters using our derived optimal control solution. The effects of the intrinsic losses and the asymmetries in the physical memory parameters are discussed quantitatively.
245 - K. Jahne , B. Yurke , U. Gavish 2006
It is shown that by switching a specific time-dependent interaction between a harmonic oscillator and a transmission line (a waveguide, an optical fiber, etc.) the quantum state of the oscillator can be transferred into that of another oscillator cou pled to the distant other end of the line, with a fidelity that is independent of the initial state of both oscillators. For a transfer time $T$, the fidelity approaches 1 exponentially in $gamma T$ where $gamma$ is a characteristic damping rate. Hence, a good fidelity is achieved even for a transfer time of a few damping times. Some implementations are discussed.
103 - Yue Ban , Xi Chen , Sigmund Kohler 2019
Long-distance transfer of quantum states is an indispensable part of large-scale quantum information processing. We propose a novel scheme for the transfer of two-electron entangled states, from one edge of a quantum dot array to the other by coheren t adiabatic passage. This protocol is mediated by pulsed tunneling barriers. In a second step, we seek for a speed up by shortcut to adiabaticity techniques. This significantly reduces the operation time and, thus, minimizes the impact of decoherence. For typical parameters of state-of-the-art solid state devices, the accelerated protocol has an operation time in the nanosecond range and terminates before a major coherence loss sets in. The scheme represents a promising candidate for entanglement transfer in solid state quantum information processing.
Quantum-state transfer with fidelity higher than 0.99 can be achieved in the ballistic regime of an arbitrarily long one-dimensional chain with uniform nearest-neighbor interaction, except for the two pairs of mirror symmetric extremal bonds, say x ( first and last) and y (second and last-but-one). These have to be roughly tuned to suitable values x ~ 2 N^{-1/3} and y ~ 2^{3/4} N^{-1/6}, N being the chain length. The general framework can describe the end-to-end response in different models, such as fermion or boson hopping models and XX spin chains.
Although a complete picture of the full evolution of complex quantum systems would certainly be the most desirable goal, for particular Quantum Information Processing schemes such an analysis is not necessary. When quantum correlations between only s pecific elements of a many-body system are required for the performance of a protocol, a more distinguished and specialised investigation is helpful. Here, we provide a striking example with the achievement of perfect state transfer in a spin chain without state initialisation, whose realisation has been shown to be possible in virtue of the correlations set between the first and last spin of the transmission-chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا