ﻻ يوجد ملخص باللغة العربية
Some authors have proposed that electron energy distributions in H II regions and planetary nebulae may be significantly nonthermal, and kappa-distributions have been suggested as being appropriate. Here it is demonstrated that the electron energy distribution function is extremely close to a Maxwellian up to electron kinetic energies ~13 eV in HII regions, and up to ~16eV in planetary nebulae: kappa-distributions are inappropriate. The small departures from a Maxwellian have negligible effects on line ratios. When observed line ratios in H II regions deviate from models with a single electron temperature, it must arise from spatial variations in electron temperature, rather than local deviations from a Maxwellian.
Emission line observations together with photoionization models provide important information about the ionization mechanisms, densities, temperatures, and metallicities in AGN-ionized gas. Photoionization models usually assume Maxwell-Boltzmann (M-B
Within the framework of the Herschel M 33 extended survey HerM33es we study the Spectral Energy Distribution (SED) of a set of HII regions in M 33 as a function of the morphology. We present a catalogue of 119 HII regions morphologically classified:
The shape of the OB-star spectral energy distribution is a critical component in many diagnostics of the ISM and galaxy properties. We use single-star HII regions from the LMC to quantitatively examine the ionizing SEDs from widely available CoStar,
Within the framework of the HerM33es Key Project for Herschel and in combination with multi-wavelength data, we study the Spectral Energy Distribution (SED) of a set of HII regions in the Local Group Galaxy M33. Using the Halpha emission, we perform
Spectra of 34 H II regions in the late-type galaxies NGC1087, NGC2967, NGC3023, NGC4030, NGC4123, and NGC4517A were observed with the South African Large Telescope (SALT). In all 34 H II regions, oxygen abundances were determined through the counterp