ﻻ يوجد ملخص باللغة العربية
Efficient energy transduction is one driver of evolution; and thus understanding biomolecular energy transduction is crucial to understanding living organisms. As an energy-orientated modelling methodology, bond graphs provide a useful approach to describing and modelling the efficiency of living systems. This paper gives some new results on the efficiency of metabolism based on bond graph models of the key metabolic processes: glycolysis.
Decomposition of biomolecular reaction networks into pathways is a powerful approach to the analysis of metabolic and signalling networks. Current approaches based on analysis of the stoichiometric matrix reveal information about steady-state mass fl
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to nove
microRNAs (miRNAs) regulate gene expression at post-transcriptional level by repressing target RNA molecules. Competition to bind miRNAs tends in turn to correlate their targets, establishing effective RNA-RNA interactions that can influence expressi
The biomolecules in and around a living cell -- proteins, nucleic acids, lipids, carbohydrates -- continuously sample myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given biomolecule also s
One need only compare the number of three-dimensional molecular illustrations in the first (1990) and third (2004) editions of Voet & Voets Biochemistry in order to appreciate this fields profound communicative value in modern biological sciences --