ترغب بنشر مسار تعليمي؟ اضغط هنا

Biomolecular System Energetics

92   0   0.0 ( 0 )
 نشر من قبل Peter Gawthrop
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient energy transduction is one driver of evolution; and thus understanding biomolecular energy transduction is crucial to understanding living organisms. As an energy-orientated modelling methodology, bond graphs provide a useful approach to describing and modelling the efficiency of living systems. This paper gives some new results on the efficiency of metabolism based on bond graph models of the key metabolic processes: glycolysis.



قيم البحث

اقرأ أيضاً

Decomposition of biomolecular reaction networks into pathways is a powerful approach to the analysis of metabolic and signalling networks. Current approaches based on analysis of the stoichiometric matrix reveal information about steady-state mass fl ows (reaction rates) through the network. In this work we show how pathway analysis of biomolecular networks can be extended using an energy-based approach to provide information about energy flows through the network. This energy-based approach is developed using the engineering-inspired bond graph methodology to represent biomolecular reaction networks. The approach is introduced using glycolysis as an exemplar; and is then applied to analyse the efficiency of free energy transduction in a biomolecular cycle model of a transporter protein (Sodium-Glucose Transport Protein 1, SGLT1). The overall aim of our work is to present a framework for modelling and analysis of biomolecular reactions and processes which considers energy flows and losses as well as mass transport.
171 - Daniel M. Zuckerman 2010
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to nove l uses of hardware. Special focus is placed on classifying algorithms -- most of which are underpinned by a few key ideas -- in order to understand their fundamental strengths and limitations. Although algorithms have proliferated, progress resulting from novel hardware use appears to be more clear-cut than from algorithms alone, partly due to the lack of widely used sampling measures.
microRNAs (miRNAs) regulate gene expression at post-transcriptional level by repressing target RNA molecules. Competition to bind miRNAs tends in turn to correlate their targets, establishing effective RNA-RNA interactions that can influence expressi on levels, buffer fluctuations and promote signal propagation. Such a potential has been characterized mathematically for small motifs both at steady state and red{away from stationarity}. Experimental evidence, on the other hand, suggests that competing endogenous RNA (ceRNA) crosstalk is rather weak. Extended miRNA-RNA networks could however favour the integration of many crosstalk interactions, leading to significant large-scale effects in spite of the weakness of individual links. To clarify the extent to which crosstalk is sustained by the miRNA interactome, we have studied its emergent systemic features in silico in large-scale miRNA-RNA network reconstructions. We show that, although generically weak, system-level crosstalk patterns (i) are enhanced by transcriptional heterogeneities, (ii) can achieve high-intensity even for RNAs that are not co-regulated, (iii) are robust to variability in transcription rates, and (iv) are significantly non-local, i.e. correlate weakly with miRNA-RNA interaction parameters. Furthermore, RNA levels are generically more stable when crosstalk is strongest. As some of these features appear to be encoded in the networks topology, crosstalk may functionally be favoured by natural selection. These results suggest that, besides their repressive role, miRNAs mediate a weak but resilient and context-independent network of cross-regulatory interactions that interconnect the transcriptome, stabilize expression levels and support system-level responses.
The biomolecules in and around a living cell -- proteins, nucleic acids, lipids, carbohydrates -- continuously sample myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given biomolecule also s amples (and is sampled by) a rapidly fluctuating local environment comprised of other biopolymers, small molecules, water, ions, etc. that diffuse to within a few nanometers, leading to inter-molecular contacts that stitch together large supramolecular assemblies. Indeed, all biological systems can be viewed as dynamic networks of molecular interactions. As a complement to experimentation, molecular simulation offers a uniquely powerful approach to analyze biomolecular structure, mechanism, and dynamics; this is possible because the molecular contacts that define a complicated biomolecular system are governed by the same physical principles (forces, energetics) that characterize individual small molecules, and these simpler systems are relatively well-understood. With modern algorithms and computing capabilities, simulations are now an indispensable tool for examining biomolecular assemblies in atomic detail, from the conformational motion in an individual protein to the diffusional dynamics and inter-molecular collisions in the early stages of formation of cellular-scale assemblies such as the ribosome. This text introduces the physicochemical foundations of molecular simulations and docking, largely from the perspective of biomolecular interactions.
122 - Cameron Mura 2014
One need only compare the number of three-dimensional molecular illustrations in the first (1990) and third (2004) editions of Voet & Voets Biochemistry in order to appreciate this fields profound communicative value in modern biological sciences -- ranging from medicine, physiology, and cell biology, to pharmaceutical chemistry and drug design, to structural and computational biology. The cliche about a picture being worth a thousand words is quite poignant here: The information content of an effectively-constructed piece of molecular graphics can be immense. Because biological function arises from structure, it is difficult to overemphasize the utility of visualization and graphics in molding our current understanding of the molecular nature of biological systems. Nevertheless, creating effective molecular graphics is not easy -- neither conceptually, nor in terms of effort required. The present collection of Rules is meant as a guide for those embarking upon their first molecular illustrations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا