ﻻ يوجد ملخص باللغة العربية
We tested the validity of the three Larson relations in a sample of 213 massive clumps selected from the Herschel Hi-GAL survey and combined with data from the MALT90 survey of 3mm emission lines. The clumps have been divided in 5 evolutionary stages to discuss the Larson relations also as function of evolution. We show that this ensemble does not follow the three Larson relations, regardless of clump evolutionary phase. A consequence of this breakdown is that the virial parameter $alpha_{vir}$ dependence with mass (and radius) is only a function of the gravitational energy, independent of the kinetic energy of the system, and $alpha_{vir}$ is not a good descriptor of clump dynamics. Our results suggest that clumps with clear signatures of infall motions are statistically indistinguishable from clumps with no such signatures. The observed non-thermal motions are not necessarily ascribed to turbulence acting to sustain the gravity, but they may be due to the gravitational collapse at the clump scales. This seems particularly true for the most massive (M$geq$1000 M$_{odot}$) clumps in the sample, where also exceptionally high magnetic fields may not be enough to stabilize the collapse.
We have undertaken the largest survey for outflows within the Galactic Plane using simultaneously observed 13CO and C18O data. 325 out of a total of 919 ATLASGAL clumps have data suitable to identify outflows, and 225 (69+-3%) of them show high veloc
Thirty massive clumps associated with bright infrared sources were observed to detect the infall signatures and characterize infall properties in the envelope of the massive clumps by APEX telescope in CO(4-3) and C$^{17}$O(3-2) lines. Eighteen objec
From a new perspective, we re-examine self-gravity and turbulence jointly, in hopes of understanding the physical basis for one of the most important empirical relations governing clouds in the interstellar medium (ISM), the Larsons Relation relating
Because the 157.74 micron [C II] line is the dominant coolant of star-forming regions, it is often used to infer the global star-formation rates of galaxies. By characterizing the [C II] and far-infrared emission from nearby Galactic star-forming mol
We report a new analysis protocol for HCN hyperfine data, based on the PYSPECKIT package, and results of using this new protocol to analyse a sample area of seven massive molecular clumps from the Census of High- and Medium-mass Protostars (CHaMP) su