ﻻ يوجد ملخص باللغة العربية
Inspired by some recent works of Tippett-Tsang and Mallary-Khanna-Price, we present a new spacetime model containing closed timelike curves (CTCs). This model is obtained postulating an ad hoc Lorentzian metric on $mathbb{R}^4$, which differs from the Minkowski metric only inside a spacetime region bounded by two concentric tori. The resulting spacetime is topologically trivial, free of curvature singularities and is both time and space orientable; besides, the inner region enclosed by the smaller torus is flat and displays geodesic CTCs. Our model shares some similarities with the time machine of Ori and Soen but it has the advantage of a higher symmetry in the metric, allowing for the explicit computation of a class of geodesics. The most remarkable feature emerging from this computation is the presence of future-oriented timelike geodesics starting from a point in the outer Minkowskian region, moving to the inner spacetime region with CTCs, and then returning to the initial spatial position at an earlier time; this means that time travel to the past can be performed by free fall across our time machine. The amount of time travelled into the past is determined quantitatively; this amount can be made arbitrarily large keeping non-large the proper duration of the travel. An important drawback of the model is the violation of the classical energy conditions, a common feature of many time machines. Other problems emerge from our computations of the required (negative) energy densities and of the tidal accelerations; these are small only if the time machine is gigantic.
This work is essentially a review of a new spacetime model with closed causal curves, recently presented in another paper (Class. Quantum Grav. textbf{35}(16) (2018), 165003). The spacetime at issue is topologically trivial, free of curvature singula
A two-level atom freely falling towards a Schwarzschild black hole was recently shown to detect radiation in the Boulware vacuum in an insightful paper [M. O. Scully et al., Proc. Natl. Acad. Sci. U.S.A. 115, 8131 (2018)]. The two-state atom acts as
We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr^-1 and a series of periodic pertur
Can quantum-mechanical particles propagating on a fixed spacetime background be approximated as test bodies satisfying the weak equivalence principle? We ultimately answer the question in the negative but find that, when universality of free-fall is
We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force. The Mode-Sum regularisation is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for th