ترغب بنشر مسار تعليمي؟ اضغط هنا

Network and Panel Quantile Effects Via Distribution Regression

166   0   0.0 ( 0 )
 نشر من قبل Ivan Fernandez-Val
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.



قيم البحث

اقرأ أيضاً

Datasets from field experiments with covariate-adaptive randomizations (CARs) usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation and inference of unconditional QTEs under CARs. We establish the consistency, limiting distribution, and validity of the multiplier bootstrap of the regression-adjusted QTE estimator. The auxiliary regression may be estimated parametrically, nonparametrically, or via regularization when the data are high-dimensional. Even when the auxiliary regression is misspecified, the proposed bootstrap inferential procedure still achieves the nominal rejection probability in the limit under the null. When the auxiliary regression is correctly specified, the regression-adjusted estimator achieves the minimum asymptotic variance. We also derive the optimal pseudo true values for the potentially misspecified parametric model that minimize the asymptotic variance of the corresponding QTE estimator. We demonstrate the finite sample performance of the new estimation and inferential methods using simulations and provide an empirical application to a well-known dataset in education.
We propose a generalization of the linear panel quantile regression model to accommodate both textit{sparse} and textit{dense} parts: sparse means while the number of covariates available is large, potentially only a much smaller number of them have a nonzero impact on each conditional quantile of the response variable; while the dense part is represent by a low-rank matrix that can be approximated by latent factors and their loadings. Such a structure poses problems for traditional sparse estimators, such as the $ell_1$-penalised Quantile Regression, and for traditional latent factor estimator, such as PCA. We propose a new estimation procedure, based on the ADMM algorithm, consists of combining the quantile loss function with $ell_1$ textit{and} nuclear norm regularization. We show, under general conditions, that our estimator can consistently estimate both the nonzero coefficients of the covariates and the latent low-rank matrix. Our proposed model has a Characteristics + Latent Factors Asset Pricing Model interpretation: we apply our model and estimator with a large-dimensional panel of financial data and find that (i) characteristics have sparser predictive power once latent factors were controlled (ii) the factors and coefficients at upper and lower quantiles are different from the median.
We propose a new estimator for the average causal effects of a binary treatment with panel data in settings with general treatment patterns. Our approach augments the two-way-fixed-effects specification with the unit-specific weights that arise from a model for the assignment mechanism. We show how to construct these weights in various settings, including situations where units opt into the treatment sequentially. The resulting estimator converges to an average (over units and time) treatment effect under the correct specification of the assignment model. We show that our estimator is more robust than the conventional two-way estimator: it remains consistent if either the assignment mechanism or the two-way regression model is correctly specified and performs better than the two-way-fixed-effect estimator if both are locally misspecified. This strong double robustness property quantifies the benefits from modeling the assignment process and motivates using our estimator in practice.
We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g . teacher value-added) with observational data. We show that, unlike with a single binary treatment, these regressions do not generally estimate convex averages of causal effects-even when the treatments are conditionally randomly assigned and the controls fully address omitted variables bias. We discuss different solutions to this issue, and propose as a solution anew class of efficient estimators of weighted average treatment effects.
China has made great achievements in electric power industry during the long-term deepening of reform and opening up. However, the complex regional economic, social and natural conditions, electricity resources are not evenly distributed, which accou nts for the electricity deficiency in some regions of China. It is desirable to develop a robust electricity forecasting model. Motivated by which, we propose a Panel Semiparametric Quantile Regression Neural Network (PSQRNN) by utilizing the artificial neural network and semiparametric quantile regression. The PSQRNN can explore a potential linear and nonlinear relationships among the variables, interpret the unobserved provincial heterogeneity, and maintain the interpretability of parametric models simultaneously. And the PSQRNN is trained by combining the penalized quantile regression with LASSO, ridge regression and backpropagation algorithm. To evaluate the prediction accuracy, an empirical analysis is conducted to analyze the provincial electricity consumption from 1999 to 2018 in China based on three scenarios. From which, one finds that the PSQRNN model performs better for electricity consumption forecasting by considering the economic and climatic factors. Finally, the provincial electricity consumptions of the next $5$ years (2019-2023) in China are reported by forecasting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا