ﻻ يوجد ملخص باللغة العربية
We design and demonstrate a resonant-type differential photodetector for low-noise quantum homodyne measurement at 500MHz optical sideband with 17MHz of bandwidth. By using a microwave monolithic amplifier and a discrete voltage buffer circuit, a low-noise voltage amplifier is realized and applied to our detector. 12dB of signal-to-noise ratio of the shot noise to the electric noise is obtained with 5mW of continuous-wave local oscillator. We analyze the frequency response and the noise characteristics of a resonant photodetector, and the theoretical model agrees with the shot noise measurement.
We present the design and characterisation of a low-noise, resonant input transimpedance amplified photodetector. The device operates at a resonance frequency of $90 ,textrm{MHz}$ and exhibits an input referred current noise of $1.2,textrm{pA}/sqrt{t
The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers.
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientif
The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction
By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Jo