ﻻ يوجد ملخص باللغة العربية
X-ray Flashes (XRFs), binary-driven hypernovae (BdHNe) are long GRB subclasses with progenitor a CO$_{rm core}$, undergoing a supernova (SN) explosion and hypercritically accreting in a tight binary system onto a companion neutron star (NS) or black hole (BH). In XRFs the NS does not reach by accretion the critical mass and no BH is formed. In BdHNe I, with shorter binary periods, the NS gravitationally collapses and leads to a new born BH. In BdHNe II the accretion on an already formed BH leads to a more massive BH. We assume that the GeV emission observed by textit{Fermi}-LAT originates from the rotational energy of the BH. Consequently, we verify that, as expected, in XRFs no GeV emission is observed. In $16$ BdHNe I and $5$ BdHNe II, within the boresight angle of LAT, the integrated GeV emission allows to estimate the initial mass and spin of the BH. In the remaining $27$ sources in the plane of the binary system no GeV emission occurs, hampered by the presence of the HN ejecta. From the ratio, $21/48$, we infer a new asymmetric morphology for the BdHNe reminiscent of the one observed in active galactic nuclei (AGN): the GeV emission occurs within a cone of half-opening angle $approx 60^{circ}$ from the normal to the orbital plane of the binary progenitor. The transparency condition requires a Lorentz factor $Gamma sim 1500$ on the source of GeV emission. The GeV luminosity in the rest-frame of the source follows a universal power-law with index of $-1.20 pm 0.04$, allowing to estimate the spin-down rate of the BH
We make a detailed time resolved spectroscopy of bright long gamma ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B, and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a blackbo
Long gamma-ray bursts are associated with the core-collapse of massive, rapidly spinning stars. However, the believed efficient angular momentum transport in stellar interiors leads to predominantly slowly-spinning stellar cores. Here, we report on b
We report on the third phase of our study of the neutrino-cooled hyperaccreting torus around a black hole that powers the jet in Gamma Ray Bursts. We focus on the influence of the black hole spin on the properties of the torus. The structure of a sta
We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino
We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is inconsistent with f