ترغب بنشر مسار تعليمي؟ اضغط هنا

A primer on the use of probability generating functions in infectious disease modeling

355   0   0.0 ( 0 )
 نشر من قبل Joel Miller
 تاريخ النشر 2018
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English
 تأليف Joel C. Miller




اسأل ChatGPT حول البحث

We explore the application of probability generating functions (PGFs) to invasive processes, focusing on infectious disease introduced into large populations. Our goal is to acquaint the reader with applications of PGFs, moreso than to derive new results. PGFs help predict a number of properties about early outbreak behavior while the population is still effectively infinite, including the probability of an epidemic, the size distribution after some number of generations, and the cumulative size distribution of non-epidemic outbreaks. We show how PGFs can be used in both discrete-time and continuous-time settings, and discuss how to use these results to infer disease parameters from observed outbreaks. In the large population limit for susceptible-infected-recovered (SIR) epidemics PGFs lead to survival-function based models that are equivalent the the usual mass-action SIR models but with fewer ODEs. We use these to explore properties such as the final size of epidemics or even the dynamics once stochastic effects are negligible. We target this tutorial to biologists and public health researchers who want to learn how to apply PGFs to invasive diseases, but it could also be used in an introductory mathematics course on PGFs. We include many exercises to help demonstrate concepts and to give practice applying the results. We summarize our main results in a few tables. Additionally we provide a small python package which performs many of the relevant calculations.



قيم البحث

اقرأ أيضاً

99 - Dina Mistry 2020
Mathematical and computational modeling approaches are increasingly used as quantitative tools in the analysis and forecasting of infectious disease epidemics. The growing need for realism in addressing complex public health questions is however call ing for accurate models of the human contact patterns that govern the disease transmission processes. Here we present a data-driven approach to generate effective descriptions of population-level contact patterns by using highly detailed macro (census) and micro (survey) data on key socio-demographic features. We produce age-stratified contact matrices for 277 sub-national administrative regions of countries covering approximately 3.5 billion people and reflecting the high degree of cultural and societal diversity of the focus countries. We use the derived contact matrices to model the spread of airborne infectious diseases and show that sub-national heterogeneities in human mixing patterns have a marked impact on epidemic indicators such as the reproduction number and overall attack rate of epidemics of the same etiology. The contact patterns derived here are made publicly available as a modeling tool to study the impact of socio-economic differences and demographic heterogeneities across populations on the epidemiology of infectious diseases.
We review research papers which use game theory to model the decision making of individuals during an epidemic, attempting to classify the literature and identify the emerging trends in this field. We show that the literature can be classified based on (i) type of population modelling (compartmental or network-based), (ii) frequency of the game (non-iterative or iterative), and (iii) type of strategy adoption (self-evaluation or imitation). We highlight that the choice of model depends on many factors such as the type of immunity the disease confers, the type of immunity the vaccine confers, and size of population and level of mixing therein. We show that while early studies used compartmental modelling with self-evaluation based strategy adoption, the recent trend is to use network-based modelling with imitation-based strategy adoption. Our review indicates that game theory continues to be an effective tool to model intervention (vaccination or social distancing) decision-making by individuals.
Human mobility is a key component of large-scale spatial-transmission models of infectious diseases. Correctly modeling and quantifying human mobility is critical for improving epidemic control policies, but may be hindered by incomplete data in some regions of the world. Here we explore the opportunity of using proxy data or models for individual mobility to describe commuting movements and predict the diffusion of infectious disease. We consider three European countries and the corresponding commuting networks at different resolution scales obtained from official census surveys, from proxy data for human mobility extracted from mobile phone call records, and from the radiation model calibrated with census data. Metapopulation models defined on the three countries and integrating the different mobility layers are compared in terms of epidemic observables. We show that commuting networks from mobile phone data well capture the empirical commuting patterns, accounting for more than 87% of the total fluxes. The distributions of commuting fluxes per link from both sources of data - mobile phones and census - are similar and highly correlated, however a systematic overestimation of commuting traffic in the mobile phone data is observed. This leads to epidemics that spread faster than on census commuting networks, however preserving the order of infection of newly infected locations. Match in the epidemic invasion pattern is sensitive to initial conditions: the radiation model shows higher accuracy with respect to mobile phone data when the seed is central in the network, while the mobile phone proxy performs better for epidemics seeded in peripheral locations. Results suggest that different proxies can be used to approximate commuting patterns across different resolution scales in spatial epidemic simulations, in light of the desired accuracy in the epidemic outcome under study.
209 - Nuno Crokidakis 2020
The world evolution of the Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2 or simply COVID-19) led the World Health Organization to declare it a pandemic. The disease appeared in China in December 2019, and it has spread fast around the wo rld, specially in european countries like Italy and Spain. The first reported case in Brazil was recorded in February 26, and after that the number of cases growed fast. In order to slow down the initial growth of the disease through the country, confirmed positive cases were isolated to not transmit the disease. To better understand the early evolution of COVID-19 in Brazil, we apply a Susceptible-Infectious-Quarantined-Recovered (SIQR) model to the analysis of data from the Brazilian Department of Health, obtained from February 26, 2020 through March 25, 2020. Based on analyical and numerical results, as well on the data, the basic reproduction number is estimated to $R_{0}=5.25$. In addition, we estimate that the ratio unidentified infectious individuals and confirmed cases at the beginning of the epidemic is about $10$, in agreement with previous studies. We also estimated the epidemic doubling time to be $2.72$ days.
School environments are thought to play an important role in the community spread of airborne infections (e.g., influenza) because of the high mixing rates of school children. The closure of schools has therefore been proposed as efficient mitigation strategy, with however high social and economic costs: alternative, less disruptive interventions are highly desirable. The recent availability of high-resolution contact networks in school environments provides an opportunity to design micro-interventions and compare the outcomes of alternative mitigation measures. We consider mitigation measures that involve the targeted closure of school classes or grades based on readily available information such as the number of symptomatic infectious children in a class. We focus on the case of a primary school for which we have high-resolution data on the close-range interactions of children and teachers. We simulate the spread of an influenza-like illness in this population by using an SEIR model with asymptomatics and compare the outcomes of different mitigation strategies. We find that targeted class closure affords strong mitigation effects: closing a class for a fixed period of time -equal to the sum of the average infectious and latent durations- whenever two infectious individuals are detected in that class decreases the attack rate by almost 70% and strongly decreases the probability of a severe outbreak. The closure of all classes of the same grade mitigates the spread almost as much as closing the whole school. Targeted class closure strategies based on readily available information on symptomatic subjects and on limited information on mixing patterns, such as the grade structure of the school, can be almost as effective as whole-school closure, at a much lower cost. This may inform public health policies for the management and mitigation of influenza-like outbreaks in the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا