ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolvent degree, Hilberts 13th Problem and geometry

143   0   0.0 ( 0 )
 نشر من قبل Jesse Wolfson
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop the theory of resolvent degree, introduced by Brauer cite{Br} in order to study the complexity of formulas for roots of polynomials and to give a precise formulation of Hilberts 13th Problem. We extend the context of this theory to enumerative problems in algebraic geometry, and consider it as an intrinsic invariant of a finite group. As one application of this point of view, we prove that Hilberts 13th Problem, and his Sextic and Octic Conjectures, are equivalent to various enumerative geometry problems, for example problems of finding lines on a smooth cubic surface or bitangents on a smooth planar quartic.



قيم البحث

اقرأ أيضاً

In this paper we consider the Galois covers of algebraic surfaces of degree 6, with all associated planar degenerations. We compute the fundamental groups of those Galois covers, using their degeneration. We show that for 8 types of degenerations the fundamental group of the Galois cover is non-trivial and for 20 types it is trivial. Moreover, we compute the Chern numbers of all the surfaces with this type of degeneration and prove that the signatures of all their Galois covers are negative. We formulate a conjecture regarding the structure of the fundamental groups of the Galois covers based on our findings. With an appendix by the authors listing the detailed computations and an appendix by Guo Zhiming classifying degree 6 planar degenerations.
For each $n$, let $text{RD}(n)$ denote the minimum $d$ for which there exists a formula for the general polynomial of degree $n$ in algebraic functions of at most $d$ variables. In 1945, Segre called for a better understanding of the large $n$ behavi or of $text{RD}(n)$. In this paper, we provide improved thresholds for upper bounds on $text{RD}(n)$. Our techniques build upon classical algebraic geometry to provide new upper bounds for small $n$ and, in doing so, fix gaps in the proofs of A. Wiman and G.N. Chebotarev in [Wim1927] and [Che1954].
For a subring $R$ of the rational numbers, we study $R$-localization functors in the local homotopy theory of simplicial presheaves on a small site and then in ${mathbb A}^1$-homotopy theory. To this end, we introduce and analyze two notions of nilpo tence for spaces in ${mathbb A}^1$-homotopy theory paying attention to future applications for vector bundles. We show that $R$-localization behaves in a controlled fashion for the nilpotent spaces we consider. We show that the classifying space $BGL_n$ is ${mathbb A}^1$-nilpotent when $n$ is odd, and analyze the (more complicated) situation where $n$ is even as well. We establish analogs of various classical results about rationalization in the context of ${mathbb A}^1$-homotopy theory: if $-1$ is a sum of squares in the base field, ${mathbb A}^n setminus 0$ is rationally equivalent to a suitable motivic Eilenberg--Mac Lane space, and the special linear group decomposes as a product of motivic spheres.
We study which quadratic forms are representable as the local degree of a map $f : A^n to A^n$ with an isolated zero at $0$, following the work of Kass and Wickelgren who established the connection to the quadratic form of Eisenbud, Khimshiashvili, a nd Levine. Our main observation is that over some base fields $k$, not all quadratic forms are representable as a local degree. Empirically the local degree of a map $f : A^n to A^n$ has many hyperbolic summands, and we prove that in fact this is the case for local degrees of low rank. We establish a complete classification of the quadratic forms of rank at most $7$ that are representable as the local degree of a map over all base fields of characteristic different from $2$. The number of hyperbolic summands was also studied by Eisenbud and Levine, where they establish general bounds on the number of hyperbolic forms that must appear in a quadratic form that is representable as a local degree. Our proof method is elementary and constructive in the case of rank 5 local degrees, while the work of Eisenbud and Levine is more general. We provide further families of examples that verify that the bounds of Eisenbud and Levine are tight in several cases.
144 - Steffen Sagave , Timo Schurg , 2013
In order to develop the foundations of logarithmic derived geometry, we introduce a model category of logarithmic simplicial rings and a notion of derived log etale maps and use this to define derived log stacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا