ﻻ يوجد ملخص باللغة العربية
It is not currently known how to put the Kerr spacetime metric into the so-called Gordon form, although the closely related Kerr-Schild form of the Kerr metric is well known. A Gordon form for the Kerr geometry, if it could be found, would be particularly useful in developing analogue models for the Kerr spacetime, since the Gordon form is explicitly given in terms of the 4-velocity and refractive index of an effective medium. In the current article we report progress toward this goal. First we present the Gordon form for an approximation to Kerr spacetime in the slow-rotation limit, obtained by suitably modifying the well-known Lense-Thirring form of the slow-rotation metric. Second we present the Gordon form for the Kerr spacetime in the near-null limit, (the 4-velocity of the medium being close to null). That these two perturbative approximations to the Kerr spacetime in Gordon form exist gives us some confidence that ultimately one might be able to write the exact Kerr spacetime in this form.
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of i
We present an exhaustive numerical investigation of the optical caustics in gravitational lensing by a spinning black hole for an observer at infinity. Besides the primary caustic, we examine higher order caustics, formed by photons performing one or
A massive vector boson field in the vicinity of a rotating black hole is known to suffer an instability, due to the exponential amplification of (co-rotating, low-frequency) bound states by black hole superradiance. Here we calculate the bound state
We consider radiative processes of an atom in a rotating black-hole background. We assume the atom, represented by a hypothetical two-level system, is coupled via a monopole interaction with a massless quantum scalar field prepared in each one of the
Outside a black hole, perturbation fields die off in time as $1/t^n$. For spherical holes $n=2ell+3$ where $ell$ is the multipole index. In the nonspherical Kerr spacetime there is no coordinate-independent meaning of multipole, and a common sense vi