ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Extreme Space Weather Factors of Exoplanetary Habitability

139   0   0.0 ( 0 )
 نشر من قبل Vladimir Airapetian
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. S. Airapetian




اسأل ChatGPT حول البحث

It is currently unknown how common life is on exoplanets, or how long planets can remain viable for life. To date, we have a superficial notion of habitability, a necessary first step, but so far lacking an understanding of the detailed interaction between stars and planets over geological timescales, dynamical evolution of planetary systems, and atmospheric evolution on planets in other systems. A planet mass, net insolation, and atmospheric composition alone are insufficient to determine the probability that life on a planet could arise or be detected. The latter set of planetary considerations, among others, underpin the concept of the habitable zone (HZ), defined as the circumstellar region where standing bodies of liquid water could be supported on the surface of a rocky planet. However, stars within the same spectral class are often treated in the same way in HZ studies, without any regard for variations in activity among individual stars. Such formulations ignore differences in how nonthermal emission and magnetic energy of transient events in different stars affect the ability of an exoplanet to retain its atmosphere.In the last few years there has been a growing appreciation that the atmospheric chemistry, and even retention of an atmosphere in many cases, depends critically on the high-energy radiation and particle environments around these stars. Indeed, recent studies have shown stellar activity and the extreme space weather, such as that created by the frequent flares and coronal mass ejections (CMEs) from the active stars and young Sun, may have profoundly affected the chemistry and climate and thus habitability of the early Earth and terrestrial type exoplanets. The goal of this white paper is to identify and describe promising key research goals to aid the field of the exoplanetary habitability for the next 20 years.



قيم البحث

اقرأ أيضاً

The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
The field of exoplanetary science is making rapid progress both in statistical studies of exoplanet properties as well as in individual characterization. As space missions provide an emerging picture of formation and evolution of exoplanetary systems , the search for habitable worlds becomes one of the fundamental issues to address. To tackle such a complex challenge, we need to specify the conditions favorable for the origin, development and sustainment of life as we know it. This requires the understanding of global (astrospheric) and local (atmospheric, surface and internal) environments of exoplanets in the framework of the physical processes of the interaction between evolving planet-hosting stars along with exoplanetary evolution over geological timescales, and the resulting impact on climate and habitability of exoplanets. Feedbacks between astrophysical, physico-chemical atmospheric and geological processes can only be understood through interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary, Earth sciences, astrobiology, and the origin of life communities. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets and potential exomoons around them may significantly modify the extent and the location of the habitable zone and provide new directions for searching for signatures of life. Thus, characterization of stellar ionizing outputs becomes an important task for further understanding the extent of habitability in the universe. The goal of this white paper is to identify and describe promising key research goals to aid the theoretical characterization and observational detection of ionizing radiation from quiescent and flaring upper atmospheres of planet hosts as well as properties of stellar coronal mass ejections and stellar energetic particle events.
A profound shift in the study of cosmology came with the discovery of thousands of exoplanets and the possibility of the existence of billions of them in our Galaxy. The biggest goal in these searches is whether there are other life-harbouring planet s. However, the question which of these detected planets are habitable, potentially-habitable, or maybe even inhabited, is still not answered. Some potentially habitable exoplanets have been hypothesized, but since Earth is the only known habitable planet, measures of habitability are necessarily determined with Earth as the reference. Several recent works introduced new habitability metrics based on optimization methods. Classification of potentially habitable exoplanets using supervised learning is another emerging area of study. However, both modeling and supervised learning approaches suffer from drawbacks. We propose an anomaly detection method, the Multi-Stage Memetic Algorithm (MSMA), to detect anomalies and extend it to an unsupervised clustering algorithm MSMVMCA to use it to detect potentially habitable exoplanets as anomalies. The algorithm is based on the postulate that Earth is an anomaly, with the possibility of existence of few other anomalies among thousands of data points. We describe an MSMA-based clustering approach with a novel distance function to detect habitable candidates as anomalies (including Earth). The results are cross-matched with the habitable exoplanet catalog (PHL-HEC) of the Planetary Habitability Laboratory (PHL) with both optimistic and conservative lists of potentially habitable exoplanets.
This section shows an overview of a recent development of the studies on great space weather events in history. Its discussion starts from the Carrington event and compare its intensity with the extreme storms within the coverage of the regular magne tic measurements. Extending its analyses back beyond their onset, this section shows several case studies of extreme storms with sunspot records in the telescopic observations and candidate auroral records in historical records. Before the onset of telescopic observations, this section shows the chronological coverages of the records of unaided-eye sunspot and candidate aurorae and several case studies on their basis.
In this Letter, we make use of sophisticated 3D numerical simulations to assess the extent of atmospheric ion and photochemical losses from Mars over time. We demonstrate that the atmospheric ion escape rates were significantly higher (by more than t wo orders of magnitude) in the past at $sim 4$ Ga compared to the present-day value owing to the stronger solar wind and higher ultraviolet fluxes from the young Sun. We found that the photochemical loss of atomic hot oxygen dominates over the total ion loss at the current epoch whilst the atmospheric ion loss is likely much more important at ancient times. We briefly discuss the ensuing implications of high atmospheric ion escape rates in the context of ancient Mars, and exoplanets with similar atmospheric compositions around young solar-type stars and M-dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا