ﻻ يوجد ملخص باللغة العربية
Context. The scattering polarization signal observed in the photospheric Sr i 4607 {AA} line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims. We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods. Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results. Spatial variations of the scattering polarization in the Sr i 4607 {AA} line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
Magnetic fields in turbulent, convective high-$beta$ plasma naturally develop highly tangled and complex topologies---the solar photosphere being the paradigmatic example. These fields are mostly undetectable by standard diagnostic techniques with fi
Oxygen is the most abundant element on the Sun after Hydrogen and Helium. The intensity spectrum of resonance lines of neutral Oxygen namely O {sc i} (1302, 1305 and 1306 AA,) has been studied in the literature for chromospheric diagnostics. In this
Several strong resonance lines, such as H I Ly-$alpha$, Mg II k, Ca II K, Ca I 4227 AA, which are characterized by deep and broad absorption profiles in the solar intensity spectrum, show conspicuous linear scattering polarization signals when observ
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can
Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics