ﻻ يوجد ملخص باللغة العربية
In this paper, we give strong lower bounds on the size of the sets of products of matrices in some certain groups. More precisely, we prove an analogue of a result due to Chapman and Iosevich for matrices in $SL_2(mathbb{F}_p)$ with restricted entries on a small set. We also provide extensions of some recent results on expansion for cubes in Heisenberg group due to Hegyv{a}ri and Hennecart.
Hegyvari and Hennecart showed that if $B$ is a sufficiently large brick of a Heisenberg group, then the product set $Bcdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra speci
We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymp
Given an abelian group $G$, it is natural to ask whether there exists a permutation $pi$ of $G$ that destroys all nontrivial 3-term arithmetic progressions (APs), in the sense that $pi(b) - pi(a) eq pi(c) - pi(b)$ for every ordered triple $(a,b,c) i
A $Gamma$-magic rectangle set $MRS_{Gamma}(a, b; c)$ of order $abc$ is a collection of $c$ arrays $(atimes b)$ whose entries are elements of group $Gamma$, each appearing once, with all row sums in every rectangle equal to a constant $omegain Gamma$
Let $(R, mathfrak{m})$ be a complete discrete valuation ring with the finite residue field $R/mathfrak{m} = mathbb{F}_{q}$. Given a monic polynomial $P(t) in R[t]$ whose reduction modulo $mathfrak{m}$ gives an irreducible polynomial $bar{P}(t) in mat