ﻻ يوجد ملخص باللغة العربية
Origami structures enabled by folding and unfolding can create complex 3D shapes. However, even a small 3D shape can have large 2D unfoldings. The huge initial dimension of the 2D flattened structure makes fabrication difficult, and defeats the main purpose, namely compactness, of many origami-inspired engineering. In this work, we propose a novel algorithmic kirigami method that provides super compaction of an arbitrary 3D shape with non-negligible surface thickness called algorithmic stacking. Our approach computationally finds a way of cutting the thick surface of the shape into a strip. This strip forms a Hamiltonian cycle that covers the entire surface and can realize transformation between two target shapes: from a super compact stacked shape to the input 3D shape. Depending on the surface thickness, the stacked structure takes merely 0.001% to 6% of the original volume. This super compacted structure not only can be manufactured in a workspace that is significantly smaller than the provided 3D shape, but also makes packing and transportation easier for a deployable application. We further demonstrate that, the proposed stackable structure also provides high pluripotency and can transform into multiple 3D target shapes if these 3D shapes can be dissected in specific ways and form a common stacked structure. In contrast to many designs of origami structure that usually target at a particular shape, our results provide a universal platform for pluripotent 3D transformable structures.
We investigate discrete spin transformations, a geometric framework to manipulate surface meshes by controlling mean curvature. Applications include surface fairing -- flowing a mesh onto say, a reference sphere -- and mesh extrusion -- e.g., rebuild
Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro map
We desgin a novel fully convolutional network architecture for shapes, denoted by Shape Fully Convolutional Networks (SFCN). 3D shapes are represented as graph structures in the SFCN architecture, based on novel graph convolution and pooling operatio
In this paper I present several novel, efficient, algorithmic techniques for solving some multidimensional geometric data management and analysis problems. The techniques are based on several data structures from computational geometry (e.g. segment
We describe a new data structure for dynamic nearest neighbor queries in the plane with respect to a general family of distance functions. These include $L_p$-norms and additively weighted Euclidean distances. Our data structure supports general (con