ﻻ يوجد ملخص باللغة العربية
We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound $sigma$ orbital and the vacancy induced bound $pi$ state in an effective two-orbital single impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hunds rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilsons numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.
Graphene is a model system for the study of electrons confined to a strictly two-dimensional layer1 and a large number of electronic phenomena have been demonstrated in graphene, from the fractional2, 3 quantum Hall effect to superconductivity4. Howe
Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronics, including magnetic focusing and lensing. An extension that appears unique to graphene is to use both n and p carrier types to create electronic a
Understanding the coupling of graphene with its local environment is critical to be able to integrate it in tomorrows electronic devices. Here we show how the presence of a metallic substrate affects the properties of an atomically tailored graphene
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon
We demonstrate a flip-chip device for performing low-temperature acoustoelectric measurements on exfoliated two-dimensional materials. With this device, we study gate-tunable acoustoelectric transport in an exfoliated monolayer graphene device, measu