ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin excitations and thermodynamics of the t-J model on the honeycomb lattice

277   0   0.0 ( 0 )
 نشر من قبل Nikolay Plakida
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic t-J Heisenberg model on the honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures and hole dopings, the electronic spectrum of excitations, the spin-excitation spectrum and thermodynamic quantities (two-spin correlation functions, staggered magnetization, magnetic susceptibility, correlation length) are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature and doping dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. Our results on the doping dependencies of the magnetization and susceptibility are analyzed in comparison with previous results for the t_J model on the square lattice.



قيم البحث

اقرأ أيضاً

235 - A.A. Vladimirov , D. Ihle , 2017
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatu res, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Neel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The N{e}el temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the beta-Cu2V2O2 compound.
64 - N.M. Plakida 2018
A microscopic theory of electronic spectrum and superconductivity within the $t$-$J$ model on the honeycomb lattice is formulated. The Dyson equation for the normal and anomalous Green functions for the two-band model in terms of the Hubbard operator s is derived by applying the Mori-type projection technique. The self-energy is evaluated in the self-consistent Born approximation for electron scattering on spin and charge fluctuations induced by the kinematical interaction for the Hubbard operators. Superconducting pairing mediated by the antiferromagnetic exchange and spin fluctuations is discussed.
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random ph ase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
121 - A.A. Vladimirov , D. Ihle , 2009
A relaxation-function theory for the dynamic spin susceptibility in the $t$--$J$ model is presented. By a sum-rule-conserving generalized mean-field approximation (GMFA), the two-spin correlation functions of arbitrary range, the staggered magnetizat ion, the uniform static susceptibility, and the antiferromagnetic correlation length are calculated in a wide region of hole doping and temperaturs. A good agreement with available exact diagonalization (ED) data is found. The correlation length is in reasonable agreement with neutron-scattering experiments on La_{2-delta}Sr_delta)CuO_4. Going beyond the GMFA, the self-energy is calculated in the mode-coupling approximation. The spin dynamics at arbitrary frequencies and wave vectors is studied for various temperatures and hole doping. At low doping a spin-wave-type behavior is found as in the Heisenberg model, while at higher doping a strong damping caused by hole hopping occurs, and a relaxation-type spin dynamics is observed in agreement with the ED results. The local spin susceptibility and its (omega/T) scaling behavior are calculated in a reasonable agreement with experimental and ED data.
240 - G. Jackeli , N.M. Plakida 1999
Dynamic spin susceptibility is calculated for the t-J model in the paramagnetic phase by applying the memory function method in terms of the Hubbard operators. A self-consistent system of equations for the memory function is obtained within the mode coupling approximation. Both itinerant hole excitations and localized spin fluctuations give contributions to the memory function. Spin dynamics have a diffusive character in the hydrodynamic limit; spin-wave-like excitations are regained in the high-frequency region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا