ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar object Oumuamua as an extinct fragment of an ejected cometary planetesimal

96   0   0.0 ( 0 )
 نشر من قبل Sean Raymond
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oumuamua was discovered passing through our Solar System on a hyperbolic orbit. It presents an apparent contradiction, with colors similar to those of volatile-rich Solar System bodies but with no visible outgassing or activity during its close approach to the Sun. Here we show that this contradiction can be explained by the dynamics of planetesimal ejection by giant planets. We propose that Oumuamua is an extinct fragment of a comet-like planetesimal born in a planet-forming disk that also formed Neptune- to Jupiter-mass giant planets. On its pathway to ejection Oumuamuas parent body underwent a close encounter with a giant planet and was tidally disrupted into small pieces, similar to comet Shoemaker-Levy 9s disruption after passing close to Jupiter. We use dynamical simulations to show that 0.1-1% of cometary planetesimals undergo disruptive encounters prior to ejection. Rocky asteroidal planetesimals are unlikely to disrupt due to their higher densities. After disruption, the bulk of fragments undergo enough close passages to their host stars to lose their surface volatiles and become extinct. Planetesimal fragments such as Oumuamua contain little of the mass in the population of interstellar objects but dominate by number. Our model makes predictions that will be tested in the coming decade by LSST.

قيم البحث

اقرأ أيضاً

Oumuamua, the first bona-fide interstellar planetesimal, was discovered passing through our Solar System on a hyperbolic orbit. This object was likely dynamically ejected from an extrasolar planetary system after a series of close encounters with gas giant planets. To account for Oumuamuas detection, simple arguments suggest that ~1 Earth mass of planetesimals are ejected per Solar mass of Galactic stars. However, that value assumes mono-sized planetesimals. If the planetesimal mass distribution is instead top-heavy the inferred mass in interstellar planetesimals increases to an implausibly high value. The tension between theoretical expectations for the planetesimal mass function and the observation of Oumuamua can be relieved if a small fraction (~0.1-1%) of planetesimals are tidally disrupted on the pathway to ejection into Oumuamua-sized fragments. Using a large suite of simulations of giant planet dynamics including planetesimals, we confirm that 0.1-1% of planetesimals pass within the tidal disruption radius of a gas giant on their pathway to ejection. Oumuamua may thus represent a surviving fragment of a disrupted planetesimal. Finally, we argue that an asteroidal composition is dynamically disfavoured for Oumuamua, as asteroidal planetesimals are both less abundant and ejected at a lower efficiency than cometary planetesimals.
1I/Oumuamua is the first interstellar object observed passing through the Solar System. Understanding the nature of these objects will provide crucial information about the formation and evolution of planetary systems, and the chemodynamical evolutio n of the Galaxy as a whole. We obtained the galactic orbital parameters of this object, considering 8 different models for the Galaxy, and compared it to those of stars of different ages from the Geneva-Copenhagen Survey (GCS). Assuming that the galactic orbital evolution of this object is similar to that of stars, we applied a Bayesian analyses and used the distribution of stellar velocities, as a function of age, to obtain a probability density function for the age of Oumuamua. We considered two models for the age-velocity dispersion relation (AVR): the traditional power law, fitted using data from the GCS; and a model that implements a second power law for younger ages, which we fitted using a sample of 153 Open Clusters (OCs). We find that the slope of the AVR is smaller for OCs than it is for field stars. Using these AVRs, we constrained an age range of 0.01-1.87 Gyr for Oumuamua and characterized a most likely age ranging between 0.20-0.45 Gyr, depending on the model used for the AVR. We also estimated the intrinsic uncertainties of the method due to not knowing the exact value of the Solar motion and the particularities of 1I/Oumuamuas ejection.
The origin of the interstellar object 1I/Oumuamua, has defied explanation. In a companion paper (Jackson & Desch, 2021), we show that a body of N2 ice with axes 45 m x 44 m x 7.5 m at the time of observation would be consistent with its albedo, non-g ravitational acceleration, and lack of observed CO or CO2 or dust. Here we demonstrate that impacts on the surfaces of Pluto-like Kuiper belt objects (KBOs) would have generated and ejected ~10^14 collisional fragments--roughly half of them H2O ice fragments and half of them N2 ice fragments--due to the dynamical instability that depleted the primordial Kuiper belt. We show consistency between these numbers and the frequency with which we would observe interstellar objects like 1I/Oumuamua, and more comet-like objects like 2I/Borisov, if other stellar systems eject such objects with efficiency like that of the Sun; we infer that differentiated KBOs and dynamical instabilities that eject impact-generated fragments may be near-universal among extrasolar systems. Galactic cosmic rays would erode such fragments over 4.5 Gyr, so that fragments are a small fraction (~0.1%) of long-period Oort comets, but C/2016 R2 may be an example. We estimate Oumuamua was ejected about 0.4-0.5 Gyr ago, from a young (~10^8 yr) stellar system, which we speculate was in the Perseus arm. Objects like Oumuamua may directly probe the surface compositions of a hitherto-unobserved type of exoplanet: exo-plutos. Oumuamua may be the first sample of an exoplanet brought to us.
The origin of the interstellar object 1I/Oumuamua has defied explanation. We perform calculations of the non-gravitational acceleration that would be experienced by bodies composed of a range of different ices and demonstrate that a body composed of N2 ice would satisfy the available constraints on the non-gravitational acceleration, size and albedo, and lack of detectable emission of CO or CO2 or dust. We find that Oumuamua was small, with dimensions 45 m x 44 m x 7.5 m at the time of observation at 1.42 au from the Sun, with a high albedo of 0.64. This albedo is consistent with the N2 surfaces of bodies like Pluto and Triton. We estimate Oumuamua was ejected about 0.4-0.5 Gyr ago from a young stellar system, possibly in the Perseus arm. Objects like Oumuamua may directly probe the surface compositions of a hitherto-unobserved type of exoplanet: exo-plutos. In a companion paper (Desch & Jackson, 2021) we demonstrate that dynamical instabilities like the one experienced by the Kuiper belt, in other stellar systems, plausibly could generate and eject large numbers of N2 ice fragments. Oumuamua may be the first sample of an exoplanet brought to us.
The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun photosphere and at a high degree of melting of around 25 percents. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا