ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude

104   0   0.0 ( 0 )
 نشر من قبل Aaron Ewall-Wice
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate the 21 cm Radio Background from accretion onto the first intermediate-mass Black Holes between $zapprox 30$ and $zapprox 16$. Combining potentially optimistic, but plausible, scenarios for black hole formation and growth with empirical correlations between luminosity and radio-emission observed in low-redshift active galactic nuclei, we find that a model of black holes forming in molecular cooling halos is able to produce a 21 cm background that exceeds the Cosmic Microwave Background (CMB) at $z approx 17$ though models involving larger halo masses are not entirely excluded. Such a background could explain the surprisingly large amplitude of the 21 cm absorption feature recently reported by the EDGES collaboration. Such black holes would also produce significant X-ray emission and contribute to the $0.5-2$ keV soft X-ray background at the level of $approx 10^{-13}-10^{-12}$ erg sec$^{-1}$ cm$^{-2}$ deg$^{-2}$, consistent with existing constraints. In order to avoid heating the IGM over the EDGES trough, these black holes would need to be obscured by Hydrogen column depths of $ N_text{H} sim 5 times 10^{23} text{cm}^{-2}$. Such black holes would avoid violating contraints on the CMB optical depth from Planck if their UV photon escape fractions were below $f_{text{esc}} lesssim 0.1$, which would be a natural result of $N_text{H} sim 5 times 10^{23} text{cm}^{-2}$ imposed by an unheated IGM.

قيم البحث

اقرأ أيضاً

113 - Jordan Mirocha 2019
The cosmic dawn refers to the period of the Universes history when stars and black holes first formed and began heating and ionizing hydrogen in the intergalactic medium (IGM). Though exceedingly difficult to detect directly, the first stars and blac k holes can be constrained indirectly through measurements of the cosmic 21-cm background, which traces the ionization state and temperature of intergalactic hydrogen gas. In this white paper, we focus on the science case for such observations, in particular those targeting redshifts z $gtrsim$ 10 when the IGM is expected to be mostly neutral. 21-cm observations provide a unique window into this epoch and are thus critical to advancing first star and black hole science in the next decade.
A recent observation points to an excess in the expected 21-cm brightness temperature from cosmic dawn. In this paper, we present an alternative explanation of this phenomenon, an interaction in the dark sector. Interacting dark energy models have be en extensively studied recently and there is a whole variety of such in the literature. Here we particularize to a specific model in order to make explicit the effect of an interaction.
The 21-cm signal from the Cosmic Dawn (CD) is likely to contain large fluctuations, with the most extreme astrophysical models on the verge of being ruled out by observations from radio interferometers. It is therefore vital that we understand not on ly the astrophysical processes governing this signal, but also other inherent processes impacting the signal itself, and in particular line-of-sight effects. Using our suite of fully numerical radiative transfer simulations, we investigate the impact on the redshifted 21-cm from the CD from one of these processes, namely the redshift-space distortions (RSDs). When RSDs are added, the resulting boost to the power spectra makes the signal more detectable for our models at all redshifts, further strengthening hopes that a power spectra measurement of the CD will be possible. RSDs lead to anisotropy in the signal at the beginning and end of the CD, but not while X-ray heating is underway. The inclusion of RSDs, however, decreases detectability of the non-Gaussianity of fluctuations from inhomogeneous X-ray heating measured by the skewness and kurtosis. On the other hand, mock observations created from all our simulations that include telescope noise corresponding to 1000 h observation with the Square Kilometre Array telescope show that we may be able image the CD for all heating models considered and suggest RSDs dramatically boost fluctuations coming from the inhomogeneous Ly-$alpha$ background.
The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at cosmic dawn, during the emergence of the first luminous astrophysical objects (~100 Myr after the Big Bang) but before these ob jects ionized the IGM (~400-800 Myr after the Big Bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays---and thus the primary driver of IGM heating and the 21 cm signature---at redshifts $z < 20$, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at $z > 20$. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.
The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR) and Cosmic Dawn. Currently operating radio telescopes have ushered in a data-driven era of 21-cm cosmology, providing the first constraints on the astrophysi cal properties of sources that drive this signal. However, extracting astrophysical information from the data is highly non-trivial and requires the rapid generation of theoretical templates over a wide range of astrophysical parameters. To this end emulators are often employed, with previous efforts focused on predicting the power spectrum. In this work we introduce 21cmGEM - the first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of the output signal is guaranteed by design. We train neural networks to predict the cosmological signal using a database of ~30,000 simulated signals which were created by varying seven astrophysical parameters: the star formation efficiency and the minimal mass of star-forming halos; the efficiency of the first X-ray sources and their spectrum parameterized by spectral index and the low energy cutoff; the mean free path of ionizing photons and the CMB optical depth. We test the performance with a set of ~2,000 simulated signals, showing that the relative error in the prediction has an r.m.s. of 0.0159. The algorithm is efficient, with a running time per parameter set of 0.16 sec. Finally, we use the database of models to check the robustness of relations between the features of the global signal and the astrophysical parameters that we previously reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا