ﻻ يوجد ملخص باللغة العربية
The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a disruption scale $lambda_D$, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius $rho_i$, ion inertial length $d_i$, ion sound radius $rho_s$, proton-cyclotron resonance scale $rho_c$ and disruption scale $lambda_D$ as a function of $beta_{perp i}$. We find that the steepest spectral indices of the dissipation range occur when $beta_e$ is in the range of 0.1-1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 AU), in qualitative agreement with the reconnection model. In this range the break scale shows remarkably good correlation with $lambda_D$. Our findings suggest that, at least at low $beta_e$, reconnection may play an important role in the development of the dissipation range turbulent cascade and causes unusually steep (steeper than -3) spectral indices.
A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussi
Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show tha
Magnetic field fluctuations in the solar wind are commonly observed to follow a power law spectrum. Near proton-kinetic scales, a spectral break occurs which is commonly interpreted as a transition to kinetic turbulence. However, this transition is n
Based on in-situ measurements by Wind spacecraft from 2005 to 2015, this letter reports for the first time a clearly scale-dependent connection between proton temperatures and the turbulence in the solar wind. A statistical analysis of proton-scale t
Compressive plasma turbulence is investigated at sub-ion scales in the solar wind using both the Fast Plasma Investigation (FPI) instrument on the Magnetospheric MultiScale mission (MMS), as well as using calibrated spacecraft potential data from the