ﻻ يوجد ملخص باللغة العربية
In this paper, we proposed a theoretical model in the far-infrared and terahertz (THz) bands, which is a dumbbell-shaped graphene metamaterial arrays with a combination of graphene nanorod and two semisphere-suspended heads. We report a detailed theoretical investigation on how to enhance localized electric field and the absorption in the dumbbell-shaped graphene metamaterial arrays. The simulation results show that by changing the geometrical parameters of the structure and the Fermi level of graphene, we can change the absorption characteristics. Furthermore, we have discovered that the resonant wavelength is insensitive to TM polarization. In addition, we also find that the double-layer graphene arrays have better absorption characteristics than single-layer graphene arrays. This work allows us to achieve tunable terahertz absorber, and may also provide potential applications in optical filter and biochemical sensing.
This letter presents a dumbbell-shaped defected ground resonator and its application in the design of differential filters. The operation principle of the dumbbell-shaped resonator (DSR) coupled to differential microstrip lines is studied through a c
Electromagnetic absorbers have drawn increasing attention in many areas. A series of plasmonic and metamaterial structures can work as efficient narrow band absorbers due to the excitation of plasmonic or photonic resonances, providing a great potent
In this article, a 2D plasmonic waveguide loaded with all dielectric anisotropic metamaterial, consisting of alternative layers of Si-SiO2, has been theoretically proposed and numerically analyzed. Main characteristics of waveguide i.e. propagation c
We report on lasing at visible wavelengths in arrays of ferromagnetic Ni nanodisks overlaid with an organic gain medium. We demonstrate that by placing an organic gain material within the mode volume of the plasmonic nanoparticles both the radiative
Hyperbolic plasmonic metamaterials provide numerous opportunities for designing unusual linear and nonlinear optical properties. We show that the modal overlap of fundamental and second-harmonic light in an anisotropic plasmonic metamaterial slab res