ﻻ يوجد ملخص باللغة العربية
The VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey is a Guaranteed Time program carried out with the ESO/VST telescope to provide deep optical imaging over two 4 deg$^2$ patches of the sky centred on the CDFS and ES1 pointings. We present the cosmic shear measurement over the 4 deg$^2$ covering the CDFS region in the $r$-band using LensFit. Each of the four tiles of 1 deg$^2$ has more than one hundred exposures, of which more than 50 exposures passed a series of image quality selection criteria for weak lensing study. The $5sigma$ limiting magnitude in $r$- band is 26.1 for point sources, which is $sim$1 mag deeper than other weak lensing survey in the literature (e.g. the Kilo Degree Survey, KiDS, at VST). The photometric redshifts are estimated using the VOICE $u,g,r,i$ together with near-infrared VIDEO data $Y,J,H,K_s$. The mean redshift of the shear catalogue is 0.87, considering the shear weight. The effective galaxy number density is 16.35 gal/arcmin$^2$, which is nearly twice the one of KiDS. The performance of LensFit on such a deep dataset was calibrated using VOICE-like mock image simulations. Furthermore, we have analyzed the reliability of the shear catalogue by calculating the star-galaxy cross-correlations, the tomographic shear correlations of two redshift bins and the contaminations of the blended galaxies. As a further sanity check, we have constrained cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. For a flat $Lambda$CDM model we have obtained $Sigma_8$ = $sigma_8(Omega_m/0.3)^{0.5}$ = $0.68^{+0.11}_{-0.15}$.
The VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey is proposed to obtain deep optical $ugri$ imaging of the CDFS and ES1 fields using the VLT Survey Telescope (VST). At present, the observations for the CDFS field have been completed,
Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method invol
We present results from a set of simulations designed to constrain the weak lensing shear calibration for the Hyper Suprime-Cam (HSC) survey. These simulations include HSC observing conditions and galaxy images from the Hubble Space Telescope (HST),
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image $sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $rsim27.5$, with over 4 billion well measured galaxies.
3D data compression techniques can be used to determine the natural basis of radial eigenmodes that encode the maximum amount of information in a tomographic large-scale structure survey. We explore the potential of the Karhunen-Lo`eve decomposition