ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary Star Fractions from the LAMOST DR4

63   0   0.0 ( 0 )
 نشر من قبل Zhijia Tian
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar systems composed of single, double, triple or high-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with the LAMOST. Effects of different model assumptions such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with $T_{rm eff}$ and decreases with [Fe/H]. We first investigate the relation between $alpha$-elements and binary fraction in such a large sample as the LAMOST. The old stars with high [$alpha$/Fe] dominate higher binary fraction than young stars with low [$alpha$/Fe]. At the same mass, former forming stars possess a higher binary fraction than newly forming ones, which may be related with the evolution of the Galaxy.



قيم البحث

اقرأ أيضاً

Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200A flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 previously known). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the codes peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2M(Sun) and 3M(Sun). Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3M(Sun)) mCP stars. We identified several astrophysically interesting objects: two mCP stars have distances and kinematical properties in agreement with halo stars; an eclipsing binary system hosting an mCP star component; and an SB2 system likely comprising of an mCP star and a supergiant component.
In this work, we present a catalog of 2651 carbon stars from the fourth Data Release (DR4) of the Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST). Using an efficient machine-learning algorithm, we find out these stars from more than seven million spectra. As a by-product, 17 carbon-enhanced metal-poor (CEMP) turnoff star candidates are also reported in this paper, and they are preliminarily identified by their atmospheric parameters. Except for 176 stars that could not be given spectral types, we classify the other 2475 carbon stars into five subtypes including 864 C-H, 226 C-R, 400 C-J, 266 C-N, and 719 barium stars based on a series of spectral features. Furthermore, we divide the C-J stars into three subtypes of CJ( H), C-J(R), C-J(N), and about 90% of them are cool N-type stars as expected from previous literature. Beside spectroscopic classification, we also match these carbon stars to multiple broadband photometries. Using ultraviolet photometry data, we find that 25 carbon stars have FUV detections and they are likely to be in binary systems with compact white dwarf companions.
The present work presents our efforts at identifying new mercury-manganese (HgMn/CP3) stars using spectra obtained with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were searched for among pre-selected e arly-type spectra from LAMOST DR4 using a modified version of the MKCLASS code that probes several Hg II and Mn II features. The spectra of the resulting 332 candidates were visually inspected. Using parallax data and photometry from Gaia DR2, we investigated magnitudes, distances from the Sun, and the evolutionary status of our sample stars. We also searched for variable stars using diverse photometric survey sources. We present 99 bona fide CP3 stars, 19 good CP3 star candidates, and seven candidates. Our sample consists of mostly new discoveries and contains, on average, the faintest CP3 stars known (peak distribution 9.5 < G < 13.5 mag). All stars are contained within the narrow spectral temperature-type range from B6 to B9.5, in excellent agreement with the expectations and the derived mass estimates (2.4 < M(Sun) < 4 for most objects). Our sample stars are between 100 Myr and 500 Myr old and cover the whole age range from zero-age to terminal-age main sequence. They are almost homogeneously distributed at fractional ages on the main sequence < 80%, with an apparent accumulation of objects between fractional ages of 50% to 80%. We find a significant impact of binarity on the mass and age estimates. Eight photometric variables were discovered, most of which show monoperiodic variability in agreement with rotational modulation. Together with the recently published catalogue of APOGEE CP3 stars, our work significantly increases the sample size of known Galactic CP3 stars, paving the way for future in-depth statistical studies.
239 - Zexi Niu , Haibo Yuan , Song Wang 2021
Basing on the large volume textit{Gaia} Early Data Release 3 and LAMOST Data Release 5 data, we estimate the bias-corrected binary fractions of the field late G and early K dwarfs. A stellar locus outlier method is used in this work, which works well for binaries of various periods and inclination angles with single epoch data. With a well-selected, distance-limited sample of about 90 thousand GK dwarfs covering wide stellar chemical abundances, it enables us to explore the binary fraction variations with different stellar populations. The average binary fraction is 0.42$pm$0.01 for the whole sample. Thin disk stars are found to have a binary fraction of 0.39$pm$0.02, thick disk stars own a higher one of 0.49$pm$0.02, while inner halo stars possibly own the highest binary fraction. For both the thin and thick disk stars, the binary fractions decrease toward higher [Fe/H], [$alpha$/H], and [M/H] abundances. However, the suppressing impacts of the [Fe/H], [$alpha$/H], and [M/H] are more significant for the thin disk stars than those for the thick disk stars. For a given [Fe/H], a positive correlation between [$alpha$/Fe] and the binary fraction is found for the thin disk stars. However, this tendency disappears for the thick disk stars. We suspect that it is likely related to the different formation histories of the thin and thick disks. Our results provide new clues for theoretical works on binary formation.
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SNIa) progenitors by studying a large sample of detached F, G and K main sequence stars in close orbits wit h white dwarf companions (i.e. WD+FGK binaries). We employ the LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) data release 4 spectroscopic data base together with GALEX (Galaxy Evolution Explorer) ultraviolet fluxes to identify 1,549 WD+FGK binary candidates (1,057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1,453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3sigma radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ~10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SNIa progenitor candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا