ﻻ يوجد ملخص باللغة العربية
Actinide compounds with 5f electrons have been attracting much attention because of their interesting magnetic and electronic properties such as heavy fermion state, unconventional superconductivity, co-existence of the superconductivity and magnetism. Recently, we have reported a phenomenological analysis on 80 actinide ferromagnets with the spin fluctuation theory originally developed to explain the ferromagnetic properties of itinerant ferromagnets in the 3d transition metals and their intermetallics (N. Tateiwa et al., Phys. Rev. B 96, 035125 (2017)). Our study suggests the itinerancy of the $5f$ electrons in most of the actinide ferromagnets and the applicability of the spin fluctuation theory to actinide 5f system. In this paper, we present a new analysis for the spin fluctuation parameter obtained with a different theoretical formula not used in the reference. We also discuss the results of the analysis from different points of views.
We have carried out an analysis of magnetic data in 69 uranium, 7 neptunium and 4 plutonium ferromagnets with the spin fluctuation theory developed by Takahashi (Y. Takahashi, J. Phys. Soc. Jpn. 55, 3553 (1986)). The basic and spin fluctuation parame
Actinide elements produce a plethora of interesting physical behaviors due to the 5f states. This review compiles and analyzes progress in understanding of the electronic and magnetic structure of the 5f states in actinide metals. Particular interest
We develop a theory for the electronic excitations in UPt$_3$ which is based on the localization of two of the $5f$ electrons. The remaining $f$ electron is delocalized and acquires a large effective mass by inducing intra-atomic excitations of the l
We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly ag
An electronic effect on a macroscopic domain structure is found in a strongly correlated half-doped manganite film Nd$_{0.5}$Sr$_{0.5}$MnO3 grown on a (011) surface of SrTiO3. The sample has a high-temperature (HT) phase free from distortion above 18