ﻻ يوجد ملخص باللغة العربية
Photoacoustic imaging (PAI), is a promising medical imaging technique that provides the high contrast of the optical imaging and the resolution of ultrasound (US) imaging. Among all the methods, Three-dimensional (3D) PAI provides a high resolution and accuracy. One of the most common algorithms for 3D PA image reconstruction is delay-and-sum (DAS). However, the quality of the reconstructed image obtained from this algorithm is not satisfying, having high level of sidelobes and a wide mainlobe. In this paper, delay-multiply-and-sum (DMAS) algorithm is suggested to overcome these limitations in 3D PAI. It is shown that DMAS algorithm is an appropriate reconstruction technique for 3D PAI and the reconstructed images using this algorithm are improved in the terms of the width of mainlobe and sidelobes, compared to DAS. Also, the quantitative results show that DMAS improves signal-to-noise ratio (SNR) and full-width-half-maximum (FWHM) for about 25 dB and 0.2 mm, respectively, compared to DAS.
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. How
In Ultrasound (US) imaging, Delay and Sum (DAS) is the most common beamformer, but it leads to low quality images. Delay Multiply and Sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from le
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality capable of providing both high contrast and high resolution of optical and UltraSound (US) imaging. When a short duration laser pulse illuminates the tissue as a target of imaging
In Photoacoustic imaging, Delay-and-Sum (DAS) algorithm is the most commonly used beamformer. However, it leads to a low resolution and high level of sidelobes. Delay-Multiply-and-Sum (DMAS) was introduced to provide lower sidelobes compared to DAS.
Downlink beamforming is a key technology for cellular networks. However, computing the transmit beamformer that maximizes the weighted sum rate subject to a power constraint is an NP-hard problem. As a result, iterative algorithms that converge to a