ﻻ يوجد ملخص باللغة العربية
We investigate large deviations of the work performed in a quantum quench across two different phases separated by a quantum critical point, using as example the Dicke model quenched from its superradiant to its normal phase. We extract the distribution of the work from the Loschmidt amplitude and compute for both the corresponding large-deviation forms. Comparing these findings with the predictions of the classification scheme put forward in [Phys. Rev. Lett. 109, 250602 (2012)], we are able to identify a regime which is in fact distinct to the ones identified so far: here the rate function exhibits a non-analytical point which is a strong indication of the existence of an out-of-equilibrium phase transition in the rare fluctuations of the work.
We study the large deviations statistics of the intensive work done by changing globally a control parameter in a thermally isolated quantum many-body system. We show that, upon approaching a critical point, large deviations well below the mean work
We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical ph
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We
We study the problem of a quantum quench in which the initial state is the ground state of an inhomogeneous hamiltonian, in two different models, conformal field theory and ordinary free field theory, which are known to exhibit thermalisation of fini
We present a systematic analysis of stochastic processes conditioned on an empirical measure $Q_T$ defined in a time interval $[0,T]$ for large $T$. We build our analysis starting from a discrete time Markov chain. Results for a continuous time Marko