ﻻ يوجد ملخص باللغة العربية
We analyze the binary gravitational microlensing event OGLE-2017-BLG-1130 (mass ratio q~0.45), the first published case in which the binary anomaly was only detected by the Spitzer Space Telescope. This event provides strong evidence that some binary signals can be missed by observations from the ground alone but detected by Spitzer. We therefore invert the normal procedure, first finding the lens parameters by fitting the space-based data and then measuring the microlensing parallax using ground-based observations. We also show that the normal four-fold space-based degeneracy in the single-lens case can become a weak eight-fold degeneracy in binary-lens events. Although this degeneracy is resolved in event OGLE-2017-BLG-1130, it might persist in other events.
We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the ${it Spitzer}$ satellite in a solar orbit. At high magnification, the anomaly in the light curve was dense
We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class $(m_psimeq 1.6,M_{rm jup})$ planet orbiting a mid-late M dwarf $(Msimeq 0.2,M_odot)$ that lies $D_{LS}simeq 1.0,math
In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-sou
We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s,
We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE~2016--BLG--1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an exami