ﻻ يوجد ملخص باللغة العربية
Drawing an analogy to the paradigm of quasi-elastic neutron scattering, we present a general approach for quantitatively investigating the spatiotemporal dependence of structural anisotropy relaxation in deformed polymers by using small-angle neutron scattering. Experiments and non-equilibrium molecular dynamics simulations on polymer melts over a wide range of molecular weights reveal that their conformational relaxation at relatively high momentum transfer $Q$ and short time can be described by a simple scaling law, with the relaxation rate proportional to $Q$. This peculiar scaling behavior, which cannot be derived from the classical Rouse and tube models, is indicative of a surprisingly weak direct influence of entanglement on the microscopic mechanism of single-chain anisotropy relaxation.
The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here we present the formulation of
Evolving structure and rheology across Kuhn scale interfaces in entangled polymer fluids under flow play a prominent role in processing of manufactured plastics, and have numerous other applications. Quantitative tracking of chain conformation statis
We present a simple reaction kinetics model to describe the polymer synthesis used by Lusignan et al. (PRE, 60, 5657, 1999) to produce randomly branched polymers in the vulcanization class. Numerical solution of the rate equations gives probabilities
The interplay of nematic order and phase separation in solutions of semiflexible polymers in solvents of variable quality is investigated by density functional theory (DFT) and molecular dynamics (MD) simulations. We studied coarse-grained models, wi
Using a coarse-grained bead-spring model for semi-flexible macromolecules forming a polymer brush, structure and dynamics of the polymers is investigated, varying chain stiffness and grafting density. The anchoring condition for the grafted chains is