ترغب بنشر مسار تعليمي؟ اضغط هنا

The chemical connection between damped Lyman-alpha systems and Local Group dwarf galaxies

91   0   0.0 ( 0 )
 نشر من قبل \\'Asa Sk\\'ulad\\'ottir Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Abundances of the volatile elements S and Zn have now been measured in around 80 individual stars in the Sculptor dwarf spheroidal galaxy, covering the metallicity range $-2.4leqtext{[Fe/H]}leq-0.9$. These two elements are of particular interest as they are not depleted onto dust in gas, and their ratio, [S/Zn], has thus commonly been used as a proxy for [$alpha$/Fe] in Damped Lyman-$alpha$ systems. The S abundances in Sculptor are similar to other $alpha$-elements in this galaxy, consistent with S being mainly created in core-collapse supernovae, but also having some contribution from supernovae Type Ia. However, our results show that Zn and Fe do not trace all the same nucleosynthetic production channels. In particular, (contrary to Fe) Zn is not significantly produced by supernovae Type Ia. Thus, [S/Zn] cannot be reliably used as a proxy for [$alpha$/Fe]. We propose [O/S] as a function of [S/H] as a possible alternative. At higher metallicities, the values of [S/Zn] measured in Damped Lyman-$alpha$ systems are inconsistent with those in local dwarf galaxies, and are more compatible with the Milky Way disk. Low-metallicity Damped Lyman-$alpha$ systems are, however, consistent with the most metal-poor stars in Local Group dwarf spheroidal galaxies. Assuming that the dust depletions of S and Zn are negligible, our comparison indicates that the star formation histories of Damped Lyman-$alpha$ systems are on average different from both the Milky Way and the Sculptor dwarf spheroidal galaxy.

قيم البحث

اقرأ أيضاً

We present a study of ~100 high redshift (z~2-4) extremely strong damped Lyman-alpha systems (ESDLA, with N(HI)>0.5x10^22 cm^-2) detected in quasar spectra from the Baryon Oscillation Spectroscopic Survey SDSS-III DR11. We study the neutral hydrogen, metal, and dust content of this elusive population of absorbers and confirm our previous finding that the high column density end of the N(HI) frequency distribution has a relatively shallow slope with power-law index -3.6, similar to what is seen from 21-cm maps in nearby galaxies. The stacked absorption spectrum indicates a typical metallicity ~1/20th solar, similar to the mean metallicity of the overall DLA population. The relatively small velocity extent of the low-ionisation lines suggests that ESDLAs do not arise from large-scale flows of neutral gas. The high column densities involved are in turn more similar to what is seen in DLAs associated with gamma-ray burst afterglows (GRB-DLAs), which are known to occur close to star forming regions. This indicates that ESDLAs arise from lines of sight passing at very small impact parameters from the host galaxy, as observed in nearby galaxies. This is also supported by simple theoretical considerations and recent high-z hydrodynamical simulations. We strongly substantiate this picture by the first statistical detection of Lya emission with <L>~(0.6+/-0.2)x10^42 erg/s in the core of ESDLAs (corresponding to about 0.1 L* at z~2-3), obtained through stacking the fibre spectra (of radius 1 corresponding to ~8 kpc at z~2.5). [truncated]
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, an d an investigation into abundances of a variety of DLA classes is conducted. The XQ-100 DLA sample contains five DLAs within 5000 km/s of their host quasar (proximate DLAs; PDLAs) as well as three sightlines which contain two DLAs within 10,000 km/s of each other along the same line-of-sight (multiple DLAs; MDLAs). Combined with previous observations in the literature, we demonstrate that PDLAs with logN(HI)<21.0 show lower [S/H] and [Fe/H] (relative to intervening systems with similar redshift and N(HI)), whilst higher [S/H] and [Si/H] are seen in PDLAs with logN(HI)>21.0. These abundance discrepancies are independent of their line-of-sight velocity separation from the host quasar, and the velocity width of the metal lines (v90). Contrary to previous studies, MDLAs show no difference in [alpha/Fe] relative to single DLAs matched in metallicity and redshift. In addition, we present follow-up UVES data of J0034+1639, a sightline containing three DLAs, including a metal-poor DLA with [Fe/H]=-2.82 (the third lowest [Fe/H] in DLAs identified to date) at z=4.25. Lastly we study the dust-corrected [Zn/Fe], emphasizing that near-IR coverage of X-Shooter provides unprecedented access to MgII, CaII and TiII lines (at redshifts 3-4) to provide additional evidence for subsolar [Zn/Fe] ratio in DLAs.
Using our sample of the most metal-rich damped Lyman $alpha$ systems (DLAs) at z$sim2$, and two literature compilations of chemical abundances in 341 DLAs and 2818 stars, we present an analysis of the chemical composition of DLAs in the context of th e Local Group. The metal-rich sample of DLAs at z$sim2$ probes metallicities as high as the Galactic disc and the most metal-rich dwarf spheroidals (dSphs), permitting an analysis of many elements typically observed in DLAs (Fe, Zn, Cr, Mn, Si, and S) in comparison to stellar abundances observed in the Galaxy and its satellites (in particular dSphs). Our main conclusions are: (1) non-solar [Zn/Fe] abundances in metal-poor Galactic stars and in dSphs over the full metallicity range probed by DLAs, suggest that Zn is not a simple proxy for Fe in DLAs and therefore not a suitable indicator of dust depletion. After correcting for dust depletion, the majority of DLAs have subsolar [Zn/Fe] similar to dSphs; (2) at [Fe/H]$sim-0.5$, a constant [Mn/Fe]$sim-0.5$ and near-solar [$alpha$/Fe] (requiring an assumption about dust depletion) are in better agreement with dwarf galaxies than Galactic disc stars; (3) [$alpha$/Zn] is usually solar or subsolar in DLAs. However, although low ratios of [$alpha$/Fe] are usually considered more `dwarf-like than `Milky Way-like, subsolar [Zn/Fe] in Local Group dwarfs leads to supersolar [$alpha$/Zn] in the dSphs, in contrast with the DLAs. Therefore, whilst DLAs exhibit some similarities with the Local Group dwarf population, there are also notable differences.
77 - Marcel Neeleman 2017
Gas surrounding high redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared to the quasars at optical wavelengths. Utilizing the Atacama Large Millimeter/Submillimeter Array, we report on detections of [CII] 158 micron line and dust continuum emission from two galaxies associated with two such absorbers at a redshift of z~4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies.
We investigate the absorption features associated with a gas-rich dwarf galaxy using cosmological hydrodynamics simulations. Our goal is to explore whether the progenitors of the lowest mass dwarf galaxies known to harbor neutral hydrogen today (M_st ar~10^6 solar mass, M_halo=4x10^9 solar mass) could possibly be detected as Damped Lyman-alpha Absorbers (DLAs) over cosmic time. We trace the evolution of a single dwarf galaxy, pre-selected to contain DLAs, from the era of the first metal-free, so-called Population~III (Pop~III), stars, down to z=0, thus allowing us to study the metal enrichment history of DLAs associated with the simulated galaxy. We find that the progenitors of the simulated dwarf are expected to be seen for most of their evolution as DLAs that are contaminated by normal, Population~II, stars. The time period during which DLAs are only metal-enriched by Pop~III stars, on the other hand, is likely very brief, confined to high redshifts, z~6. The susceptibility of the dwarfs to the external UV radiation background allows them to preserve neutral gas only at the centre (a few ~100 pc). This results in a small probability that the simulated dwarf would be observed as a DLA. This study suggests that DLAs are unlikely to be hosted in the lowest mass dwarfs that can harbor neutral gas (M_halo~ 4x10^9 solar mass), below which neutral gas is unlikely to exist. However, this study does illustrate that, when detected, absorption lines provide a powerful method for probing ISM conditions inside the smallest dwarf galaxies at intermediate to high redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا