ترغب بنشر مسار تعليمي؟ اضغط هنا

Coarse-Grained Simulation of DNA using LAMMPS

111   0   0.0 ( 0 )
 نشر من قبل Oliver Henrich
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the last decade coarse-grained nucleotide models have emerged that allow us to DNA and RNA on unprecedented time and length scales. Among them is oxDNA, a coarse-grained, sequence-specific model that captures the hybridisation transition of DNA and many structural properties of single- and double-stranded DNA. oxDNA was previously only available as standalone software, but has now been implemented into the popular LAMMPS molecular dynamics code. This article describes the new implementation and analyses its parallel performance. Practical applications are presented that focus on single-stranded DNA, an area of research which has been so far under-investigated. The LAMMPS implementation of oxDNA lowers the entry barrier for using the oxDNA model significantly, facilitates future code development and interfacing with existing LAMMPS functionality as well as other coarse-grained and atomistic DNA models.



قيم البحث

اقرأ أيضاً

A coarse-grained simulation model eliminates microscopic degrees of freedom and represents a polymer by a simplified structure. A priori, two classes of coarse-grained models may be distinguished: those which are designed for a specific polymer and r eflect the underlying atomistic details to some extent, and those which retain only the most basic features of a polymer chain (chain connectivity, short-range excluded-volume interactions, etc.). In this review we mainly focus on the second class of generic polymer models, while the first class of specific coarse-grained models is only touched upon briefly.
While a significant body of investigations have been focused on the process of protein self-assembly, much less is understood about the reverse process of a filament breaking due to thermal motion into smaller fragments, or depolymerization of subuni ts from the filament ends. Indirect evidence for actin and amyloid filament fragmentation has been reported, although the phenomenon has never been directly observed either experimentally or in simulations. Here we report the direct observation of filament depolymerization and breakup in a minimal, calibrated model of coarse-grained molecular simulation. We quantify the orders of magnitude by which the depolymerization rate from the filament ends $k_mathrm{off}$ is larger than fragmentation rate $k_{-}$ and establish the law $k_mathrm{off}/k_- = exp [( varepsilon_| - varepsilon_bot) / k_mathrm{B}T ] = exp [0.5 varepsilon / k_mathrm{B}T ]$, which accounts for the topology and energy of bonds holding the filament together. This mechanism and the order-of-magnitude predictions are well supported by direct experimental measurements of depolymerization of insulin amyloid filaments.
We study DNA self-assembly and DNA computation using a coarse-grained DNA model within the directional dynamic bonding framework {[}C. Svaneborg, Comp. Phys. Comm. 183, 1793 (2012){]}. In our model, a single nucleotide or domain is represented by a s ingle interaction site. Complementary sites can reversibly hybridize and dehybridize during a simulation. This bond dynamics induces a dynamics of the angular and dihedral bonds, that model the collective effects of chemical structure on the hybridization dynamics. We use the DNA model to perform simulations of the self-assembly kinetics of DNA tetrahedra, an icosahedron, as well as strand displacement operations used in DNA computation.
We present a coarse-grained single-site potential for simulating chiral interactions, with adjustable strength, handedness, and preferred twist angle. As an application, we perform basin-hopping global optimisation to predict the favoured geometries for clusters of chiral rods. The morphology phase diagram based upon these predictions has four distinct families, including previously reported structures for potentials that introduce chirality based on shape, such as membranes and helices. The transition between these two configurations reproduces some key features of experimental results for {it{fd}} bacteriophage. The potential is computationally inexpensive, intuitive, and versatile; we expect it will be useful for large scale simulations of chiral molecules. For chiral particles confined in a cylindrical container we reproduce the behaviour observed for fusilli pasta in a jar. Hence this chiropole potential has the capability to provide insight into structures on both macroscopic and molecular length scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا