ﻻ يوجد ملخص باللغة العربية
Classical simulations of quantum circuits are limited in both space and time when the qubit count is above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with more than 50 qubits, there are several methods of simulation proposed by teams at Google and IBM. Here, we present a scheme of simulation which can extract a large amount of measurement outcomes within a short time, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56- and 42-qubit circuits on a single PC. We also estimate that a 72-qubit circuit of depth 23 can be simulated in about 16 h on a supercomputer identical to that used by the IBM team. Moreover, the simulation processes are exceedingly separable, hence parallelizable, involving just a few inter-process communications. Our work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations.
We describe a qubit linearly coupled to a heat bath, either directly or via a cavity. The bath is formed of oscillators with a distribution of energies and coupling strengths, both for qubit-oscillator and oscillator-oscillator interaction. A direct
In the Bloch sphere picture, one finds the coefficients for expanding a single-qubit density operator in terms of the identity and Pauli matrices. A generalization to $n$ qubits via tensor products represents a density operator by a real vector of le
The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circ
The future development of quantum information using superconducting circuits requires Josephson qubits with long coherence times combined to a high-delity readout. Major progress in the control of coherence has recently been achieved using circuit qu
A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics of a qubit, described by a semigroup of single qubit quantum channels ${T_t}$ specified by a generator $mathcal{L}$. This algorithm requires only $mathcal{O}big((||ma