ﻻ يوجد ملخص باللغة العربية
This lecture briefly reviews the major recent advances in radio astronomy made possible by ultra-deep surveys, reaching microJansky flux density levels. A giant step forward in many fields, including the study of the evolution of the cosmic star formation history is expected with the advent of the Square Kilometer Array (SKA).
Radio wavelengths offer the unique possibility of tracing the total star-formation rate in galaxies, both obscured and unobscured. As such, they may provide the most robust measurement of the star-formation history of the Universe. In this chapter we
We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN
We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model
The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covere
Building galaxy merger trees from a state-of-the-art cosmological hydrodynamics simulation, Horizon-AGN, we perform a statistical study of how mergers and smooth accretion drive galaxy morphologic properties above $z > 1$. More specifically, we inves