ﻻ يوجد ملخص باللغة العربية
The passage of a magnetosonic (MS) soliton in a cold plasma leads to the displacement of charged particles in the direction of a compressive pulse and in the opposite direction of a rarefaction pulse. In the overdense plasma limit, the displacement induced by a weakly nonlinear MS soliton is derived analytically. This result is then used to derive an asymptotic expansion for the displacement resulting from the bouncing motion of a MS soliton reflected back and forth in a vacuum-bounded cold plasma slab. Particles displacement after the pulse energy has been lost to the vacuum region is shown to scale as the ratio of light speed to Alfven velocity. Results for the displacement after a few MS soliton reflections are corroborated by particle-in-cell simulations.
Starting from the governing equations for a quantum magnetoplasma including the quantum Bohm potential and electron spin-1/2 effects, we show that the system of quantum magnetohydrodynamic (QMHD) equations admit rarefactive solitons due to the balanc
Magnetic reconnection is a fundamental plasma process associated with conversion of the embedded magnetic field energy into kinetic and thermal plasma energy, via bulk acceleration and Ohmic dissipation. In many high-energy astrophysical events, magn
The generation of thin and high density plasma slabs at high repetition rate is a key issue for ultra-high intensity laser applications. We present a scheme to create such plasma slabs, based on the propagation and collision in a gas jet of two count
Observational evidence in space and astrophysical plasmas with long collisional mean free path suggests that more massive charged particles may be preferentially heated. One possible mechanism for this is the turbulent cascade of energy from injectio
When the nature of a magnetosonic pulse propagating in a bounded magnetized plasma slab is successively transformed from compression to rarefaction and vice-versa upon reflection at a plasma-vacuum interface, both the energy and the longitudinal elec