ترغب بنشر مسار تعليمي؟ اضغط هنا

Mining Container Image Repositories for Software Configuration and Beyond

55   0   0.0 ( 0 )
 نشر من قبل Tianyin Xu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces the idea of mining container image repositories for configuration and other deployment information of software systems. Unlike traditional software repositories (e.g., source code repositories and app stores), image repositories encapsulate the entire execution ecosystem for running target software, including its configurations, dependent libraries and components, and OS-level utilities, which contributes to a wealth of data and information. We showcase the opportunities based on concrete software engineering tasks that can benefit from mining image repositories. To facilitate future mining efforts, we summarize the challenges of analyzing image repositories and the approaches that can address these challenges. We hope that this paper will stimulate exciting research agenda of mining this emerging type of software repositories.



قيم البحث

اقرأ أيضاً

Software Repositories contain knowledge on how software engineering teams work, communicate, and collaborate. It can be used to develop a data-informed view of a teams development process, which in turn can be employed for process improvement initiat ives. In modern, Agile development methods, process improvement takes place in Retrospective meetings, in which the last development iteration is discussed. However, previously proposed activities that take place in these meetings often do not rely on project data, instead depending solely on the perceptions of team members. We propose new Retrospective activities, based on mining the software repositories of individual teams, to complement existing approaches with more objective, data-informed process views.
Misconfigurations have become the dominant causes of software failures in recent years, drawing tremendous attention for their increasing prevalence and severity. Configuration constraints can preemptively avoid misconfiguration by defining the condi tions that configuration options should satisfy. Documentation is the main source of configuration constraints, but it might be incomplete or inconsistent with the source code. In this regard, prior researches have focused on obtaining configuration constraints from software source code through static analysis. However, the difficulty in pointer analysis and context comprehension prevents them from collecting accurate and comprehensive constraints. In this paper, we observed that software logs often contain configuration constraints. We conducted an empirical study and summarized patterns of configuration-related log messages. Guided by the study, we designed and implemented ConfInLog, a static tool to infer configuration constraints from log messages. ConfInLog first selects configuration-related log messages from source code by using the summarized patterns, then infers constraints from log messages based on the summarized natural language patterns. To evaluate the effectiveness of ConfInLog, we applied our tool on seven popular open-source software systems. ConfInLog successfully inferred 22 to 163 constraints, in which 59.5% to 61.6% could not be inferred by the state-of-the-art work. Finally, we submitted 67 documentation patches regarding the constraints inferred by ConfInLog. The constraints in 29 patches have been confirmed by the developers, among which 10 patches have been accepted.
This paper studies the context aggregation problem in semantic image segmentation. The existing researches focus on improving the pixel representations by aggregating the contextual information within individual images. Though impressive, these metho ds neglect the significance of the representations of the pixels of the corresponding class beyond the input image. To address this, this paper proposes to mine the contextual information beyond individual images to further augment the pixel representations. We first set up a feature memory module, which is updated dynamically during training, to store the dataset-level representations of various categories. Then, we learn class probability distribution of each pixel representation under the supervision of the ground-truth segmentation. At last, the representation of each pixel is augmented by aggregating the dataset-level representations based on the corresponding class probability distribution. Furthermore, by utilizing the stored dataset-level representations, we also propose a representation consistent learning strategy to make the classification head better address intra-class compactness and inter-class dispersion. The proposed method could be effortlessly incorporated into existing segmentation frameworks (e.g., FCN, PSPNet, OCRNet and DeepLabV3) and brings consistent performance improvements. Mining contextual information beyond image allows us to report state-of-the-art performance on various benchmarks: ADE20K, LIP, Cityscapes and COCO-Stuff.
This paper claims that a new field of empirical software engineering research and practice is emerging: data mining using/used-by optimizers for empirical studies or DUO. For example, data miners can generate models that are explored by optimizers. A lso, optimizers can advise how to best adjust the control parameters of a data miner. This combined approach acts like an agent leaning over the shoulder of an analyst that advises ask this question next or ignore that problem, it is not relevant to your goals. Further, those agents can help us build better predictive models, where better can be either greater predictive accuracy or faster modeling time (which, in turn, enables the exploration of a wider range of options). We also caution that the era of papers that just use data miners is coming to an end. Results obtained from an unoptimized data miner can be quickly refuted, just by applying an optimizer to produce a different (and better performing) model. Our conclusion, hence, is that for software analytics it is possible, useful and necessary to combine data mining and optimization using DUO.
Scientific software registries and repositories serve various roles in their respective disciplines. These resources improve software discoverability and research transparency, provide information for software citations, and foster preservation of co mputational methods that might otherwise be lost over time, thereby supporting research reproducibility and replicability. However, developing these resources takes effort, and few guidelines are available to help prospective creators of registries and repositories. To address this need, we present a set of nine best practices that can help managers define the scope, practices, and rules that govern individual registries and repositories. These best practices were distilled from the experiences of the creators of existing resources, convened by a Task Force of the FORCE11 Software Citation Implementation Working Group during the years 2019-2020. We believe that putting in place specific policies such as those presented here will help scientific software registries and repositories better serve their users and their disciplines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا