ﻻ يوجد ملخص باللغة العربية
The iron-based superconductors are characterized by multiple-orbital physics where all the five Fe 3$d$ orbitals get involved. The multiple-orbital nature gives rise to various novel phenomena like orbital-selective Mott transition, nematicity and orbital fluctuation that provide a new route for realizing superconductivity. The complexity of multiple-orbital also asks to disentangle the relationship between orbital, spin and nematicity, and to identify dominant orbital ingredients that dictate superconductivity. The bulk FeSe superconductor provides an ideal platform to address these issues because of its simple crystal structure and unique coexistence of superconductivity and nematicity. However, the orbital nature of the low energy electronic excitations and its relation to the superconducting gap remain controversial. Here we report direct observation of highly anisotropic Fermi surface and extremely anisotropic superconducting gap in the nematic state of FeSe superconductor by high resolution laser-based angle-resolved photoemission measurements. We find that the low energy excitations of the entire hole pocket at the Brillouin zone center are dominated by the single $d_{xz}$ orbital. The superconducting gap exhibits an anti-correlation relation with the $d_{xz}$ spectral weight near the Fermi level, i.e., the gap size minimum (maximum) corresponds to the maximum (minimum) of the $d_{xz}$ spectral weight along the Fermi surface. These observations provide new insights in understanding the orbital origin of the extremely anisotropic superconducting gap in FeSe superconductor and the relation between nematicity and superconductivity in the iron-based superconductors.
To elucidate the origin of nematic order in FeSe, we performed field-dependent 77Se-NMR measurements on single crystals of FeSe. We observed orbital ordering from the splitting of the NMR spectra and Knight shift and a suppression of it with magnetic
We use high-resolution angle-resolved photoemission spectroscopy to map the three-dimensional momentum dependence of the superconducting gap in FeSe. We find that on both the hole and electron Fermi surfaces, the magnitude of the gap follows the dist
The microscopic mechanism governing the zero-resistance flow of current in some iron-based, high-temperature superconducting materials is not well understood up to now. A central issue concerning the investigation of these materials is their supercon
The importance of the spin-orbit coupling (SOC) effect in Fe-based superconductors (FeSCs) has recently been under hot debate. Considering the Hunds coupling-induced electronic correlation, the understanding of the role of SOC in FeSCs is not trivial
FeSe is arguably the simplest, yet the most enigmatic, iron-based superconductor. Its nematic but non-magnetic ground state is unprecedented in this class of materials and stands out as a current puzzle. Here, our NMR measurements in the nematic stat