ﻻ يوجد ملخص باللغة العربية
We report the discovery of a cold Super-Earth planet (m_p=4.4 +/- 0.5 M_Earth) orbiting a low-mass (M=0.23 +/- 0.03 M_Sun) M dwarf at projected separation a_perp = 1.18 +/- 0.10 AU, i.e., about 1.9 times the snow line. The system is quite nearby for a microlensing planet, D_Lens = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi_rel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, microlens parallax that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q < 1 * 10^-4. We apply a new planet-detection sensitivity method, which is a variant of V/V_max, to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/d(ln q) ~ q^p, with p = 1.05 (+0.78,-0.68), which confirms the turnover in the mass function found by Suzuki et al. relative to the power law of opposite sign n = -0.93 +/- 0.13 at higher mass ratios q >~ 2 * 10^-4. We combine our result with that of Suzuki et al. to obtain p = 0.73 (+0.42,-0.34).
We present microlensing planet OGLE-2017-BLG-0173Lb, with planet-host mass ratio either $qsimeq 2.5times 10^{-5}$ or $qsimeq 6.5times 10^{-5}$, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, $Deltachi^2
We report the discovery of microlensing planet OGLE-2017-BLG-0373Lb. We show that while the planet-host system has an unambiguous microlens topology, there are two geometries within this topology that fit the data equally well, which leads to a facto
At $q=1.81pm 0.20 times 10^{-5}$, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio $q$ of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent pile-up at $q=5$--10 $times
We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE~2016--BLG--1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an exami
We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the le