ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant electrocaloric response in the prototypical Pb(Mg,Nb)O$_{3}$ relaxor ferroelectric from atomistic simulations

180   0   0.0 ( 0 )
 نشر من قبل Zhijun Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An atomistic effective Hamiltonian is used to investigate electrocaloric (EC) effects of Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ (PMN) relaxor ferroelectrics in its ergodic regime, and subject to electric fields applied along the pseudocubic [111] direction. Such Hamiltonian qualitatively reproduces (i) the electric field-versus-temperature phase diagram, including the existence of a critical point where first-order and second-order transitions meet each other; and (ii) a giant EC response near such critical point. It also reveals that such giant response around this critical point is microscopically induced by field-induced percolation of polar nanoregions. Moreover, it is also found that, for any temperature above the critical point, the EC coefficient-versus-electric field curve adopts a maximum (and thus larger electrocaloric response too), that can be well described by the general Landau-like model proposed in [Jiang et al, Phys. Rev. B 96, 014114 (2017)] and that is further correlated with specific microscopic features related to dipoles lying along different rhombohedral directions. Furthermore, for temperatures being at least 40 K higher than the critical temperature, the (electric field, temperature) line associated with this maximal EC coefficient is below both the Widom line and the line representing percolation of polar nanoregions.

قيم البحث

اقرأ أيضاً

Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba(Zr$_{0.5}$Ti$_{0.5}$)O$_{3}$ (BZT) relaxor ferroelectric. We find that the EC coefficient varies non-monotonically with the field at a ny temperature, presenting a maximum that can be traced back to the behavior of BZTs polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in non-ergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.
We investigate the low temperature behaviour of Pb(In$_{1/2}$Nb$_{1/2}$)O$_{3}$-Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$ using dielectric permittivity measurements. We compare single crystal plates measured in the [001] and [111] directions with a polycrystalline ceramic of the same composition. Poled crystals behave very differently to unpoled crystals, whereas the dielectric spectrum of the ceramic changes very little on poling. A large, frequency dependent dielectric relaxation seen in the poled [001] crystal around 100 K is much less prominent in the [111] crystal, and doesnt occur in the ceramic. Preparation conditions and the microstructure of the material play a role in the low temperature dynamics of relaxor-ferroelectric crystals.
We report the spontaneous decay of a soft, optical phonon in a solid. Using neutron spectroscopy, we find that specific phonon lifetimes in the relaxor PbMg$_{1/3}$Nb$_{2/3}$O$_{3}$ are anomalously short within well-defined ranges of energy and momen tum. This behavior is independent of ferroelectric order and occurs when the optical phonon with a specific energy and momentum can kinematically decay into two acoustic phonons with lower phase velocity. We interpret the well-known relaxor waterfall effect as a form of quasiparticle decay analogous to that previously reported in quantum spin liquids and quantum fluids.
Neutron pair distribution function analysis and first principles calculations have been employed to study short-range correlations in heavily disordered dielectric material Sr$_x$Ba$_{1-x}$Nb$_2$O$_6$ ($x=0.35, 0.5$ and 0.61). The combination of meth ods has been fruitful in pinpointing main local-structure features, their temperature behaviour and interrelation. A rather complex system of tilts is found to be both temperature and Sr-content sensitive with the biggest tilt magnitudes reached at low temperatures and high $x$. Relative Nb-O$_6$ displacements, directly responsible for materials ferroelectric properties, are shown to be distinct in two octahedra sub-systems with different freezing temperatures and disparate levels of deviation from macroscopic polarization direction. Intrinsic disorder caused by Sr, Ba and vacancy distribution is found to introduce local strain to the structure and directly influence octahedra tilting. These findings establish a new atomistic picture of the local structure -- property relationship in Sr$_x$Ba$_{1-x}$Nb$_2$O$_6$.
The crystal structure of the PbMg$_{1/3}$Ta$_{2/3}$O$_3$ (PMT) relaxor ferroelectric was studied under hydrostatic pressure up to $sim 7$ GPa by means of powder neutron diffraction. We find a drastic pressure-induced decrease of the lead displacement from the inversion centre which correlates with an increase by $sim$ 50 % of the anisotropy of the oxygen temperature factor. The vibrations of the Mg/Ta are, in contrast, rather pressure insensitive. We attribute these changes being responsible for the previously reported pressure-induced suppression of the anomalous dielectric permittivity and diffuse scattering in relaxor ferroelectrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا