ترغب بنشر مسار تعليمي؟ اضغط هنا

Building machine learning force fields for nanoclusters

409   0   0.0 ( 0 )
 نشر من قبل Claudio Zeni
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analysing the performance of 2-body, 3-body and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within a $sim$0.1 eV/$text{AA}$ average error even for small training datasets, and achieve high accuracy even on out-of-sample, high temperature, structures. While training and testing on the same structure always provides satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [Glielmo et al. PRB 97, 184307 (2018)]. We use this to assess the thermal stability of Ni$_{19}$ nanoclusters at a fractional cost of full ab initio calculations.



قيم البحث

اقرأ أيضاً

Machine learning algorithms have recently emerged as a tool to generate force fields which display accuracies approaching the ones of the ab-initio calculations they are trained on, but are much faster to compute. The enhanced computational speed of machine learning force fields results key for modelling metallic nanoparticles, as their fluxionality and multi-funneled energy landscape needs to be sampled over long time scales. In this review, we first formally introduce the most commonly used machine learning algorithms for force field generation, briefly outlining their structure and properties. We then address the core issue of training database selection, reporting methodologies both already used and yet unused in literature. We finally report and discuss the recent literature regarding machine learning force fields to sample the energy landscape and study the catalytic activity of metallic nanoparticles.
Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expen sive simulations is the definition of coarse-grained molecular models. Existing coarse-graining approaches define an effective interaction potential to match defined properties of high-resolution models or experimental data. In this paper, we reformulate coarse-graining as a supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-validation to select and compare the performance of different models. We introduce CGnets, a deep learning approach, that learns coarse-grained free energy functions and can be trained by a force matching scheme. CGnets maintain all physically relevant invariances and allow one to incorporate prior physics knowledge to avoid sampling of unphysical structures. We show that CGnets can capture all-atom explicit-solvent free energy surfaces with models using only a few coarse-grained beads and no solvent, while classical coarse-graining methods fail to capture crucial features of the free energy surface. Thus, CGnets are able to capture multi-body terms that emerge from the dimensionality reduction.
288 - Chi Chen , Zhi Deng , Richard Tran 2017
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mos importance as a struc tural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods still do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including energies, forces, stresses, elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large-scale, long-time scale simulations.
Machine learning encompasses a set of tools and algorithms which are now becoming popular in almost all scientific and technological fields. This is true for molecular dynamics as well, where machine learning offers promises of extracting valuable in formation from the enormous amounts of data generated by simulation of complex systems. We provide here a review of our current understanding of goals, benefits, and limitations of machine learning techniques for computational studies on atomistic systems, focusing on the construction of empirical force fields from ab-initio databases and the determination of reaction coordinates for free energy computation and enhanced sampling.
74 - Haiyan Chen , Yue Zeng , Yi Li 2020
The secondary Bjerknes force plays a significant role in the evolution of bubble clusters. However, due to the complex dependence of the force on multiple parameters, it is highly non-trivial to include the effects of this force in the simulations of bubble clusters. In this paper, machine learning is used to develop a data-driven model for the secondary Bjerknes force between two insonated bubbles as a function of the equilibrium radii of the bubbles, the distance between the bubbles, the amplitude and the frequency of the pressure. The force varies over several orders of magnitude, which poses a serious challenge for the usual machine learning models. To overcome this difficulty, the magnitudes and the signs of the force are separated and modelled separately. A nonlinear regression is obtained with a feed-forward network model for the logarithm of the magnitude, whereas the sign is modelled by a support-vector machine model. The principle, the practical aspects related to the training and validation of the machine models are introduced. The predictions from the models are checked against the values computed from the Keller-Miksis equations. The results show that the models are extremely efficient while providing accurate estimate of the force. The models make it computationally feasible for the future simulations of the bubble clusters to include the effects of the secondary Bjerknes force.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا