ﻻ يوجد ملخص باللغة العربية
The incomplete fusion dynamics of $^6$Li + $^{209}$Bi collisions at energies above the Coulomb barrier is investigated. The classical dynamical model implemented in the {sc platypus} code is used to understand and quantify the impact of both $^6$Li resonance states and transfer-triggered breakup modes (involving short-lived projectile-like nuclei such as $^8$Be and $^5$Li) on the formation of incomplete fusion products. Model calculations explain the experimental incomplete-fusion excitation function fairly well, indicating that (i) delayed direct breakup of $^6$Li reduces the incomplete fusion cross-sections, and (ii) the neutron-stripping channel practically determines those cross-sections.
The optical potential of halo and weakly bound nuclei has a long range part due to the coupling to breakup that damps the elastic scattering angular distributions. In order to describe correctly the breakup channel in the case of scattering on a heav
The classical dynamical model for reactions induced by weakly-bound nuclei at near-barrier energies is developed further. It allows a quantitative study of the role and importance of incomplete fusion dynamics in asymptotic observables, such as the p
The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80s for two-fragment projectile
The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of he fusion cross setion at sub-barrier energies was understood in terms of the dynamical processes arising from strong c
A self-contained Fortran-90 program based on a classical trajectory model with stochastic breakup is presented, which should be a powerful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body