ﻻ يوجد ملخص باللغة العربية
Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-like planets in the habitable zone of their host star. Current technology enables the detection of technosignatures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that is sensitive to Arecibo-class transmitters located within ~420 ly of Earth and transmitters that are 1000 times more effective than Arecibo within ~13 000 ly of Earth. Our observations focused on 14 planetary systems in the Kepler field and used the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. Each source was observed for a total integration time of 5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband signals with Doppler drift rates between +/-9 Hz/s. We flagged any detection with a signal-to-noise ratio in excess of 10 as a candidate signal and identified approximately 850 000 candidates. Most (99%) of these candidate signals were automatically classified as human-generated radio-frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic RFI because they have frequencies that overlap those used by global navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were attributable to an extraterrestrial source.
We conducted a search for technosignatures in April of 2018 and 2019 with the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. These observations focused on regions surrounding 31 Sun-like stars near the plane of the Galaxy
MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiple
This paper reports the first OH 18-cm line observation of the first detected interstellar object 1I/2017 U1 (`Oumuamua) using the Green Bank Telescope. We have observed the OH lines at 1665.402 MHz, 1667.359, and 1720.53 MHz frequencies with a spectr
We have conducted a search for artificial radio emission associated with the Kepler-160 system following the report of the discovery of the Earth-like planet candidate KOI-456.04 on 2020 June 4 (arXiv:1905.09038v2). Our search targeted both narrowban
Neutral Hydrogen (HI) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencie