ترغب بنشر مسار تعليمي؟ اضغط هنا

Process-independent effective coupling. From QCD Greens functions to phenomenology

77   0   0.0 ( 0 )
 نشر من قبل Jose Rodriguez-Quintero
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article reports on a very recent proposal for a new type of process-independent QCD effective charge [Phys.Rev.D96(2017)054026] defined, as an anologue of the Gell-Mann-Low effective charge in QCD, on the ground of nothing but the knowledge of the gauge-field two-point Greens function, albeit modified within a particular computational framework; namely, the combination of pinch technique and background field method which makes possible a systematic rearranging of classes of diagrams in order to redefine the Greens function and have them obey linear QED-like Slavnov-Taylor identities. We have here calculated that effective charge, shown how strikingly well it compares to a process-dependent effective charge based on the Bjorken sum rule; and, finally, employed it in an exploratory calculation of the proton electromagnetic form factor in the hard scattering regime.

قيم البحث

اقرأ أيضاً

Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nu clear reactions. As the first step, mean-field evolution for the density matrix for colliding slabs is studied in one dimension. The strategy to extend the dynamics to correlations is described.
We sketch the calculation of the pion structure functions within the DSE framework, following two alternative albeit consistent approaches, and discuss then their QCD evolution, the running driven by an effective charge, from a hadronic scale up to any larger one accessible to experiment.
A systematic study of the microscopic and thermodynamical properties of pure neutron matter at finite temperature within the Self-Consistent Greens Function approach is performed. The model dependence of these results is analyzed by both comparing th e results obtained with two different microscopic interactions, the CD-BONN and the Argonne V18 potentials, and by analyzing the results obtained with other approaches, such as the Brueckner--Hartree--Fock approximation, the variational approach and the virial expansion.
130 - Johannes Kirscher 2015
The emergence of complex macroscopic phenomena from a small set of parameters and microscopic concepts demonstrates the power and beauty of physical theories. A theory which relates the wealth of data and peculiarities found in nuclei to the small nu mber of parameters and symmetries of quantum chromodynamics is by that standard of exceptional beauty. Decade-long research on computational physics and on effective field theories facilitate the assessment of the presumption that quark masses and strong and electromagnetic coupling constants suffice to parameterize the nuclear chart. By presenting the current status of that enterprise, this article touches the methodology of predicting nuclei by simulating the constituting quarks and gluons and the development of effective field theories as appropriate representations of the fundamental theory. While the nuclear spectra and electromagnetic responses analyzed computationally so far with lattice QCD are in close resemblance to those which intrigued experimentalists a century ago, they also test the theoretical understanding which was unavailable to guide the nuclear pioneers but developed since then. This understanding is shown to be deficient in terms of correlations amongst nuclear observables and their sensitivity to fundamental parameters. By reviewing the transition from one effective field theory to another, from QCD to pionful chiral theories to pionless and eventually to cluster theories, we identify some of those deficiencies and conceptual problems awaiting a solution before QCD can be identified as the high-energy theory from which the nuclear landscape emerges.
354 - Michael C. Birse 2020
An approach is outline to constructing an optical potential that includes the effects of antisymmetry and target recoil. it is based on the retarded Greens function, which could make it a better starting point for applications to direct nuclear react ions, particularly when extended to coupled channels. Its form retains a simple connection to folding potentials, even in the presence of three-body forces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا