ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of electron and hole pockets and partial gap opening in the correlated semimetal Ca3Ru2O7

78   0   0.0 ( 0 )
 نشر من قبل Hui Xing
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic band structure of correlated Ca3Ru2O7 featuring an antiferromagnetic as well as a structural transition has been determined theoretically at high temperatures, which has led to the understanding of the remarkable properties of Ca3Ru2O7 such as the bulk spin valve effects. However, its band structure and Fermi surface (FS) below the structural transition have not been resolved even though a FS consisting of electron pockets was found experimentally. Here we report magneto electrical transport and thermoelectric measurements with the electric current and temper- ature gradient directed along a and b axes of an untwined single crystal of Ca3Ru2O7 respectively. The thermopower obtained along the two crystal axes were found to show opposite signs at low temperatures, demonstrating the presence of both electron and hole pockets on the FS. In addition, how the FS evolves across T* = 30 K at which a distinct transition from coherent to incoherent behavior occurs was also inferred - the Hall and Nernst coefficient results suggest a temperature and momentum dependent partial gap opening in Ca3Ru2O7 below the structural transition, with a pos- sible Lifshitz transition occurring at T*. The experimental demonstration of a correlated semimetal ground state in Ca3Ru2O7 calls for further theoretical studies of this remarkable material.



قيم البحث

اقرأ أيضاً

We apply $^{125}$Te nuclear magnetic resonance (NMR) spectroscopy to investigate the Dirac semimetal ZrTe$_5$. With the NMR magnetic field parallel to the $b$-axis, we observe significant quantum magnetic effects. These include an abrupt drop at 150 K in spin-lattice relaxation rate. This corresponds to a gap-opening transition in the Dirac carriers, likely indicating the onset of excitonic pairing. Below 50 K, we see a more negative shift for the Te$_z$ bridging site indicating the repopulation of Dirac levels with spin polarized carriers at these temperatures. This is the previously reported 3D quantum Hall regime; however, we see no sign of a charge density wave as has been proposed.
We use Ru $L_3$-edge resonant inelastic x-ray scattering (RIXS) to study the full range of excitations in Ca$_3$Ru$_2$O$_7$ from meV-scale magnetic dynamics through to the eV-scale interband transitions. This bilayer $4d$-electron correlated metal ex presses a rich phase diagram, displaying long range magnetic order below 56 K followed by a concomitant structural, magnetic and electronic transition at 48 K. In the low temperature phase we observe a magnetic excitation with a bandwidth of $sim$30 meV and a gap of $sim$8 meV at the zone center, in excellent agreement with inelastic neutron scattering data. The dispersion can be modeled using a Heisenberg Hamiltonian for a bilayer $mathrm{S}=1$ system with single ion anisotropy terms. At a higher energy loss, $dd$-type excitations show heavy damping in the presence of itinerant electrons, giving rise to a fluorescence-like signal appearing between the $t_{2g}$ and $e_g$ bands. At the same time, we observe a resonance originating from localized $t_{2g}$ excitations, in analogy to the structurally related Mott-insulator Ca$_2$RuO$_4$. But whereas Ca$_2$RuO$_4$ shows sharp separate spin-orbit excitations and Hunds-rule driven spin-state transitions, here we identify only a single broad asymmetric feature. These results indicate that local intra-ionic interactions underlie the correlated physics in Ca$_3$Ru$_2$O$_7$, even as the excitations become strongly mixed in the presence of itinerant electrons.
Plutonium is a critically important material as the behavior of its 5f-electrons stands midway between the metallic-like itinerant character of the light actinides and localized atomic-core-like character of the heavy actinides. The delta-phase of pl utonium (delta-Pu), while still itinerant, has a large coherent Kondo peak and strong electronic correlations coming from its near-localized character. Using sophisticated Gutwiller wavefunction and dynamical mean-field theory correlated theories, we study for the first time the Fermi surface and associated mass renormalizations of delta-Pu together with calculations of the de Haas-van Alphen (dHvA) frequencies. We find a large (200%) correlation-induced volume expansion in both the hole and electron pockets of the Fermi surface in addition to an intermediate mass enhancement. All of the correlated electron theories predict, approximately, the same hole pocket placement in the Brillouin zone, which is different from that obtained in conventional density-functional band-structure theory, whereas the electron pockets from all theories are in, roughly, the same place.
We investigate the electronic states of a one-dimensional two-orbital Hubbard model with band splitting by the exact diagonalization method. The Luttinger liquid parameter $K_{rho}$ is calculated to obtain superconducting (SC) phase diagram as a func tion of on-site interactions: the intra- and inter-orbital Coulomb $U$ and $U$, the Hund coupling $J$, and the pair transfer $J$. In this model, electron and hole Fermi pockets are produced when the Fermi level crosses both the upper and lower orbital bands. We find that the system shows two types of SC phases, the SC Roman{u-large} for $U>U$ and the SC Roman{u-large} for $U<U$, in the wide parameter region including both weak and strong correlation regimes. Pairing correlation functions indicate that the most dominant pairing for the SC Roman{u-large} (SC Roman{u-large}) is the intersite (on-site) intraorbital spin-singlet with (without) sign reversal of the order parameters between two Fermi pockets. The result of the SC Roman{u-large} is consistent with the sign-reversing s-wave pairing that has recently been proposed for iron oxypnictide superconductors.
Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear, electronlike Hall effect up to 33 T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا