ﻻ يوجد ملخص باللغة العربية
We extend the chromomagnetic model by further considering the effect of color interaction. The effective mass parameters between quark pairs ($m_{qq}$ or $m_{qbar{q}}$) are introduced to account both the effective quark masses and the color interaction between the two quarks. Using the experimental masses of hadrons, the quark pair parameters are determined between the light quark pairs and the light-heavy quark pairs. Then the parameters of heavy quark pairs ($cc$, $cb$, $bb$) are estimated based on simple quark model assumption. We calculate all masses of doubly and triply heavy-quark baryons. The newly discovered doubly charmed baryon $Xi_{cc}$ fits into the model with an error of 12 MeV.
Using an extended chromomagnetic model, we perform a systematic study of the masses of the doubly heavy tetraquarks. We find that the ground states of the doubly heavy tetraquarks are dominated by color-triplet $ket{(qq)^{bar{3}_{c}}(bar{Q}bar{Q})^{3
Doubly heavy tetraquark $(QQbar qbar q)$ states are the prime candidates of tightly bound exotic systems and weakly decaying. In the framework of the improved chromomagnetic interaction (ICMI) model, we complete a systematic study on the mass spectra
The masses of baryons containing two heavy quarks and their couplings to the corresponding quark currents are evaluated in the framework of NRQCD sum rules. The coulomb-like corrections in the system of doubly heavy diquark are taken into account, an
We report results from a study of heavy-baryon spectroscopy within a relativistic constituent- quark model, whose hyperfine interaction is based on Goldstone-boson-exchange dynamics. While for light-flavor constituent quarks it is now commonly accept
Exclusive nonleptonic decays of bottom and charm baryons are studied within a relativistic quark model. We include factorizing as well as nonfactorizing contributions to the decay amplitudes.